403 research outputs found

    Biodiversity-productivity relationships are key to nature-based climate solutions

    Get PDF
    The global impacts of biodiversity loss and climate change are interlinked, but the feedbacks between them are rarely assessed. Areas with greater tree diversity tend to be more productive, providing a greater carbon sink, and biodiversity loss could reduce these natural carbon sinks. Here, we quantify how tree and shrub species richness could affect biomass production on biome, national and regional scales. We find that GHG mitigation could help maintain tree diversity and thereby avoid a 9–39% reduction in terrestrial primary productivity across different biomes, which could otherwise occur over the next 50 years. Countries that will incur the greatest economic damages from climate change stand to benefit the most from conservation of tree diversity and primary productivity, which contribute to climate change mitigation. Our results emphasize an opportunity for a triple win for climate, biodiversity and society, and highlight that these co-benefits should be the focus of reforestation programmes

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions

    Get PDF
    The magnitude of the global terrestrial carbon pool and related fluxes to and from the atmosphere are still poorly known. The European Space Agency P-band radar BIOMASS mission will help to reduce this uncertainty by providing unprecedented information on the distribution of forest above-ground biomass (AGB), particularly in the tropics where the gaps are greatest and knowledge is most needed. Mission selection was made in full knowledge of coverage restrictions over Europe, North and Central America imposed by the US Department of Defense Space Objects Tracking Radar (SOTR) stations. Under these restrictions, only 3% of AGB carbon stock coverage is lost in the tropical forest biome, with this biome representing 66% of global AGB carbon stocks in 2005. The loss is more significant in the temperate (72%), boreal (37%) and subtropical (29%) biomes, with these accounting for approximately 12%, 15% and 7%, respectively, of the global forest AGB carbon stocks. In terms of global carbon cycle modelling, there is minimal impact in areas of high AGB density, since mainly lower biomass forests in cooler climates are affected. In addition, most areas affected by the SOTR stations are located in industrialized countries with well-developed national forest inventories, so that extensive information on AGB is already available. Hence the main scientific objectives of the BIOMASS mission are not seriously compromised. Furthermore, several space sensors that can estimate AGB in lower biomass forests are in orbit or planned for launch between now and the launch of BIOMASS in 2021, which will help to fill the gaps in mission coverage

    Grand challenges in biodiversity-ecosystem functioning research in the era of science-policy platforms require explicit consideration of feedbacks

    Get PDF
    Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them

    Spectral Ocean Wave Climate Variability Based on Atmospheric Circulation Patterns

    Get PDF
    Traditional approaches for assessing wave climate variability have been broadly focused on aggregated or statistical parameters such as significant wave height, wave energy flux, or mean wave direction. These studies, although revealing the major general modes of wave climate variability and trends, do not take into consideration the complexity of the wind-wave fields. Because ocean waves are the response to both local and remote winds, analyzing the directional full spectra can shed light on atmospheric circulation not only over the immediate ocean region, but also over a broad basin scale. In this work, the authors use a pattern classification approach to explore wave climate variability in the frequency–direction domain. This approach identifies atmospheric circulation patterns of the sea level pressure from the 31-yr long Climate Forecast System Reanalysis (CFSR) and wave spectral patterns of two selected buoys in the North Atlantic, finding one-to-one relations between each synoptic pattern (circulation type) and each spectral wave energy distribution (spectral type). Even in the absence of long-wave records, this method allows for the reconstruction of longterm wave spectra to cover variability at several temporal scales: daily, monthly, seasonal, interannual, decadal, long-term trends, and future climate change projections.The authors are grateful to Puertos del Estado (Spanish Ministry of Public Works and Infrastructures) for providing us the instrumental buoy data. This work was partially funded by the project IMAR21 (CT M2010-15009) from the Spanish Government

    The Reliability of Global and Hemispheric Surface Temperature Records

    Get PDF
    The purpose of this review article is to discuss the development and associated estimation of uncertainties in the global and hemispheric surface temperature records. The review begins by detailing the groups that produce surface temperature datasets. After discussing the reasons for similarities and differences between the various products, the main issues that must be addressed when deriving accurate estimates, particularly for hemispheric and global averages, are then considered. These issues are discussed in the order of their importance for temperature records at these spatial scales: biases in SST data, particularly before the 1940s; the exposure of land-based thermometers before the development of louvred screens in the late 19th century; and urbanization effects in some regions in recent decades. The homogeneity of land-based records is also discussed; however, at these large scales it is relatively unimportant. The article concludes by illustrating hemispheric and global temperature records from the four groups that produce series in near-real time

    Mechanisms for a nutrient-conserving carbon pump in a seasonally stratified, temperate continental shelf sea

    Get PDF
    Continental shelf seas may have a significant role in oceanic uptake and storage of carbon dioxide (CO2) from the atmosphere, through a ‘continental shelf pump’ mechanism. The northwest European continental shelf, in particular the Celtic Sea (50°N 8°W), was the target of extensive biogeochemical sampling from March 2014 to September 2015, as part of the UK Shelf Sea Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to investigate the biogeochemical seasonality in this temperate, seasonally stratified system. Following the onset of stratification, near-surface biological primary production during spring and summer removed dissolved inorganic carbon and nutrients, and a fraction of the sinking particulate organic matter was subsequently remineralised beneath the thermocline. Water column inventories of these variables throughout 1.5 seasonal cycles, corrected for air-sea CO2 exchange and sedimentary denitrification and anammox, isolated the combined effect of net community production (NCP) and remineralisation on the inorganic macronutrient inventories. Overall inorganic inventory changes suggested that a significant fraction (>50%) of the annual NCP of around 3 mol-C m–2 yr–1 appeared to be stored within a long-lived organic matter (OM) pool with a lifetime of several months or more. Moreover, transfers into and out of this pool appeared not to be in steady state over the one full seasonal cycle sampled. Accumulation of such a long-lived and potentially C-rich OM pool is suggested to be at least partially responsible for the estimated net air-to-sea CO2 flux of ∌1.3 mol-C m–2 yr–1 at our study site, while providing a mechanism through which a nutrient-conserving continental shelf pump for CO2 could potentially operate in this and other similar regions

    Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable

    Get PDF
    All climate models predict a freshening of the North Atlantic at high latitude that may induce an abrupt change of the Atlantic Meridional Overturning Circulation (hereafter AMOC) if it resides in the bistable regime, where both a strong and a weak state coexist. The latter remains uncertain as there is no consensus among observations and ocean reanalyses, where the AMOC is bistable, versus most climate models that reproduce a mono-stable strong AMOC. A series of four hindcast simulations of the global ocean at 1/12° resolution, which is presently unique, are used to diagnose freshwater transport by the AMOC in the South Atlantic, an indicator of AMOC bistability. In all simulations, the AMOC resides in the bistable regime: it exports freshwater southward in the South Atlantic, implying a positive salt advection feedback that would act to amplify a decreasing trend in subarctic deep water formation as projected in climate scenarios

    Analysis of the Association between Metabolic Syndrome and Disease in a Workplace Population over Time

    Full text link
    Objectives:  While research has confirmed an association between metabolic syndrome (MetS) and diseases such as heart disease and diabetes, none of these studies have been conducted in a worksite population. Because corporations are often the primary payer of health-care costs in the United States, they have a vested interest in identifying the magnitude of MetS risk factors in employed populations, and also in knowing if those risk factors are associated with other health risks or medical conditions. Methods:  This study identified the prevalence of MetS risk factors and self-reported disease in employees (N = 3285) of a manufacturing corporation who participated in a health risk appraisal and biometric screening in both 2004 and 2006. Health-care costs, pharmacy costs, and short-term disability costs were compared for those with and without MetS and disease. Results:  The prevalence of MetS increased from 2004 to 2006 in this employed population. Those with MetS were significantly more likely to self-report arthritis, chronic pain, diabetes, heartburn, heart disease, and stroke. Employees with MetS in 2004 were also significantly more likely to report new cases of arthritis, chronic pain, diabetes, and heart disease in 2006. The costs of those with MetS and disease were 3.66 times greater than those without MetS and without disease. Conclusions:  MetS is associated with disease and increased costs in this working population. There is an opportunity for health promotion to prevent MetS risk factors from progressing to disease status which may improve vitality for employees, as well as limit the economic impact to the corporation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75375/1/j.1524-4733.2009.00651.x.pd

    The West African Monsoon Onset: a concise comparison of definitions

    Get PDF
    The onset of the West African Monsoon (WAM) marks a vital time for local and regional stakeholders. Whilst the seasonal progression of monsoon winds and the related migration of precipitation from the Guinea Coast towards the Soudan/Sahel is apparent, there exist contrasting man-made definitions of what the WAM onset means. Broadly speaking, onset can be analyzed regionally, locally or over a designated intermediate scale. There are at least eighteen distinct definitions of the WAM onset in publication with little work done on comparing observed onset from different definitions or comparing onset realizations across different datasets and resolutions. Here, nine definitions have been calculated using multiple datasets of different metrics at different resolution. It is found that mean regional onset dates are consistent across multiple datasets and different definitions. There is low inter-annual variability in regional onset suggesting that regional seasonal forecasting of the onset provides few benefits over climatology. In contrast, local onsets show high spatial, inter-annual and inter-definition variability. Furthermore it is found that there is little correlation between local onset dates and regional onset dates across West Africa implying a disharmony between regional measures of onset and the experience on a local scale. The results of this study show that evaluation of seasonal monsoon onset forecasts is far from straightforward. Given a seasonal forecasting model, it is possible to simultaneously have a good and bad prediction of monsoon onset simply through selection of onset definition and observational dataset used for comparison
    • 

    corecore