343 research outputs found

    Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

    Full text link
    We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat non-numerical values of the integrand, how they deal with improper divergent integrals and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in Matlab and tested using both the "families" suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar

    Spatial methods for event reconstruction in CLEAN

    Full text link
    In CLEAN (Cryogenic Low Energy Astrophysics with Noble gases), a proposed neutrino and dark matter detector, background discrimination is possible if one can determine the location of an ionizing radiation event with high accuracy. We simulate ionizing radiation events that produce multiple scintillation photons within a spherical detection volume filled with liquid neon. We estimate the radial location of a particular ionizing radiation event based on the observed count data corresponding to that event. The count data are collected by detectors mounted at the spherical boundary of the detection volume. We neglect absorption, but account for Rayleigh scattering. To account for wavelength-shifting of the scintillation light, we assume that photons are absorbed and re-emitted at the detectors. Here, we develop spatial Maximum Likelihood methods for event reconstruction, and study their performance in computer simulation experiments. We also study a method based on the centroid of the observed count data. We calibrate our estimates based on training data

    The Cosmic Linear Anisotropy Solving System (CLASS) IV: Efficient implementation of non-cold relics

    Full text link
    We present a new flexible, fast and accurate way to implement massive neutrinos, warm dark matter and any other non-cold dark matter relics in Boltzmann codes. For whatever analytical or numerical form of the phase-space distribution function, the optimal sampling in momentum space compatible with a given level of accuracy is automatically found by comparing quadrature methods. The perturbation integration is made even faster by switching to an approximate viscous fluid description inside the Hubble radius, which differs from previous approximations discussed in the literature. When adding one massive neutrino to the minimal cosmological model, CLASS becomes just 1.5 times slower, instead of about 5 times in other codes (for fixed accuracy requirements). We illustrate the flexibility of our approach by considering a few examples of standard or non-standard neutrinos, as well as warm dark matter models.Comment: 23 pages, 8 figures, 3 tables. Matches published version. Code available at http://class-code.ne

    Optimal Power Management Strategy for Energy Storage with Stochastic Loads

    Get PDF
    In this paper, a power management strategy (PMS) has been developed for the control of energy storage in a system subjected to loads of random duration. The PMS minimises the costs associated with the energy consumption of specific systems powered by a primary energy source and equipped with energy storage, under the assumption that the statistical distribution of load durations is known. By including the variability of the load in the cost function, it was possible to define the optimality criteria for the power flow of the storage. Numerical calculations have been performed obtaining the control strategies associated with the global minimum in energy costs, for a wide range of initial conditions of the system. The results of the calculations have been tested on a MATLAB/Simulink model of a rubber tyre gantry (RTG) crane equipped with a flywheel energy storage system (FESS) and subjected to a test cycle, which corresponds to the real operation of a crane in the Port of Felixstowe. The results of the model show increased energy savings and reduced peak power demand with respect to existing control strategies, indicating considerable potential savings for port operators in terms of energy and maintenance costs

    Point Contact Spectroscopy of Superconducting Gap Anisotropy in Nickel Borocarbide Compound LuNi2B2C

    Get PDF
    Point contacts are used to investigate the anisotropy of the superconducting energy gap in LuNi2B2C in the ab plane and along the c axis. It is shown that the experimental curves should be described assuming that the superconducting gap is non-uniformly distributed over the Fermi surface. The largest and the smallest gaps have been estimated by two-gap fitting models. It is found that the largest contribution to the point-contact conductivity in the c direction is made by a smaller gap and, in the ab plane by a larger gap. The deviation from the one-gap BCS model is pronounced in the temperature dependence of the gap in both directions. The temperature range, where the deviation occurs, is for the c direction approximately 1.5 times more than in the ab plane. The \Gamma parameter, allowing quantitatively estimate the gap anisotropy by one-gap fitting, in c direction is also about 1.5 times greater than in the ab plane. Since it is impossible to describe satisfactorily such gap distribution either by the one- or two-gap models, a continuous, dual-maxima model of gap distribution over the Fermi surface should be used to describe superconductivity in this material.Comment: 10 pages, 14 Figs, accepted in PR

    Relaxation rates and collision integrals for Bose-Einstein condensates

    Full text link
    Near equilibrium, the rate of relaxation to equilibrium and the transport properties of excitations (bogolons) in a dilute Bose-Einstein condensate (BEC) are determined by three collision integrals, G12\mathcal{G}^{12}, G22\mathcal{G}^{22}, and G31\mathcal{G}^{31}. All three collision integrals conserve momentum and energy during bogolon collisions, but only G22 \mathcal{G}^{22} conserves bogolon number. Previous works have considered the contribution of only two collision integrals, G22 \mathcal{G}^{22} and G12 \mathcal{G}^{12}. In this work, we show that the third collision integral G31 \mathcal{G}^{31} makes a significant contribution to the bogolon number relaxation rate and needs to be retained when computing relaxation properties of the BEC. We provide values of relaxation rates in a form that can be applied to a variety of dilute Bose-Einstein condensates.Comment: 18 pages, 4 figures, accepted by Journal of Low Temperature Physics 7/201

    Longitudinal quantile regression in presence of informative drop-out through longitudinal-survival joint modeling

    Full text link
    We propose a joint model for a time-to-event outcome and a quantile of a continuous response repeatedly measured over time. The quantile and survival processes are associated via shared latent and manifest variables. Our joint model provides a flexible approach to handle informative drop-out in quantile regression. A general Monte Carlo Expectation Maximization strategy based on importance sampling is proposed, which is directly applicable under any distributional assumption for the longitudinal outcome and random effects, and parametric and non-parametric assumptions for the baseline hazard. Model properties are illustrated through a simulation study and an application to an original data set about dilated cardiomyopathies

    Time-Frequency Analysis of Superorbital Modulation of X-ray Binary SMC X-1 by Hilbert-Huang Transform

    Full text link
    The high-mass X-ray binary (HMXB) SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between ~40 d and ~60 d. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE).We analyzed the entire ASM database collected since 1996. The Hilbert-Huang Transform (HHT), developed for non-stationary and nonlinear time series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum while it shows more detailed information in both the time and frequency domains. The RXTE observations manifest that the superorbital modulation period was mostly betweenn ~50 d and ~65 d, whenas it changed to ~45 d around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed in a time scale of hundreds of days between ~MJD 51,500 and ~MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for ~0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.Comment: 26 pages, 9 figures, accepted for publication in The Astrophysical Journa

    Real structured singular value synthesis using the scaled Popov criterion

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77238/1/AIAA-21537-608.pd
    • …
    corecore