7 research outputs found

    TRP Channels: Current Perspectives in the Adverse Cardiac Remodeling

    Get PDF
    Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart’s structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Implication of CREB in the calcium regulation by ischemia/reperfusion in cardiomyocytes: Calcium Signaling and Excitation–Contraction in Cardiac, Skeletal and Smooth Muscle

    No full text
    It is well established that abnormalities in [Ca2+] regulation occur in heart diseases. Actually, independent studies demonstrated that Orai1/2/3 and TRPC protein related with store-operated calcium channels (SOCC) have a role in cardiac pathologies. Ischemia/reperfusion (I/R) stimulates transcription factor activation that modifies the expression of genes implicated in the pathogenesis of this process. Previous results described an increase in the expression of Orai1 and TRPC5 in cardiomyocytes after I/R, although the molecular mechanisms that mediate this regulation are still unknown. The aim of this study is to examine the molecular mechanisms implicated in the regulation of SOCC in cardiomyocytes after I/R focusing on the handling of intracellular [Ca2+]. Experiments were performed in a rat model of myocardial I/R, in adult (ARVM) and neonatal rat ventricular myocytes (NRVM), and in ventricular samples of heart-failure patients. Immunofluorescence was used to investigate CREB activation, and the protein expression was analyzed by Western blot. Calcium diastolic studies were realized using microfluorimetric technic with FURA-2AM. To evoke intracellular Ca2+ transients, ARVMs were field stimulated at 0.5 Hz and NRVMs at 1 Hz. An activation of CREB after I/R was observed in adult and neonatal rat cardiomyocytes. Furthermore, it was demonstrated that this activation was mediated by PKA, but not for EPAC2 or ERK. I/R induced an CREB-dependent ORAI protein expression increase and also an increase in the diastolic calcium in NRVM and ARVM from I/R animal models. Additionally, it was observed that ORAI1 inhibition with SYNTA-66 or GSK reduced the calcium diastolic increase induced by I/R. We demonstrated, for the first time, the activation of the transcription factor CREB in cardiomyocytes after I/R. This activation induces an up-regulation of ORAI1, suggesting that this channel plays a role in the I/R induced calcium diastolic increase

    Adenylyl cyclase type 8 overexpression impairs phosphorylation-dependent orai1 inactivation and promotes migration in MDA-MB-231 breast cancer cells

    Get PDF
    This article belongs to the Special Issue Targeting Calcium Signaling in Cancer Cells.Orai1 plays a major role in store-operated Ca2+ entry (SOCE) in triple-negative breast cancer (TNBC) cells. This channel is inactivated via different mechanisms, including protein kinase C (PKC) and protein kinase A (PKA)-dependent phosphorylation at Ser-27 and Ser-30 or Ser-34, respectively, which shapes the Ca2+ responses to agonists. The Ca2+ calmodulin-activated adenylyl cyclase type 8 (AC8) was reported to interact directly with Orai1, thus mediating a dynamic interplay between the Ca2+- and cyclic adenosine monophosphate (cAMP)-dependent signaling pathways. Here, we show that the breast cancer cell lines MCF7 and MDA-MB-231 exhibit enhanced expression of Orai1 and AC8 as compared to the non-tumoral breast epithelial MCF10A cell line. In these cells, AC8 interacts with the Orai1α variant in a manner that is not regulated by Orai1 phosphorylation. AC8 knockdown in MDA-MB-231 cells, using two different small interfering RNAs (siRNAs), attenuates thapsigargin (TG)-induced Ca2+ entry and also Ca2+ influx mediated by co-expression of Orai1 and the Orai1-activating small fragment (OASF) of STIM1 (stromal interaction molecule-1). Conversely, AC8 overexpression enhances SOCE, as well as Ca2+ entry, in cells co-expressing Orai1 and OASF. In MDA-MB-231 cells, we found that AC8 overexpression reduces the Orai1 phosphoserine content, thus suggesting that AC8 interferes with Orai1 serine phosphorylation, which takes place at residues located in the AC8-binding site. Consistent with this, the subset of Orai1 associated with AC8 in naïve MDA-MB-231 cells is not phosphorylated in serine residues in contrast to the AC8-independent Orai1 subset. AC8 expression knockdown attenuates migration of MCF7 and MDA-MB-231 cells, while this maneuver has no effect in the MCF10A cell line, which is likely attributed to the low expression of AC8 in these cells. We found that AC8 is required for FAK (focal adhesion kinase) phosphorylation in MDA-MB-231 cells, which might explain its role in cell migration. Finally, we found that AC8 is required for TNBC cell proliferation. These findings indicate that overexpression of AC8 in breast cancer MDA-MB-231 cells impairs the phosphorylation-dependent Orai1 inactivation, a mechanism that might support the enhanced ability of these cells to migrate.This work was supported by MINECO (Grants BFU2016-74932-C2-1-P and BFU2016-74932-C2-2-P) and Junta de Extremadura-FEDER (Fondo Europeo de Desarrollo Regional Grants IB16046 and GR18061). J.J.L. and I.J. are supported by a contract from Junta de Extremadura (TA18011 and TA18054, respectively). J.S.-C. is supported by a contract from Ministry of Science, Innovation, and Universities, Spain

    Melatonin downregulates TRPC6, impairing store-operated calcium entry in triple-negative breast cancer cells

    No full text
    Melatonin has been reported to induce effective reduction in growth and development in a variety of tumors, including breast cancer. In triple-negative breast cancer (TNBC) cells, melatonin attenuates a variety of cancer features, such as tumor growth and apoptosis resistance, through a number of still poorly characterized mechanisms. One biological process that is important for TNBC cells is store-operated Ca2+ entry (SOCE), which is modulated by TRPC6 expression and function. We wondered whether melatonin might intersect with this pathway as part of its anticancer activity. We show that melatonin, in the nanomolar range, significantly attenuates TNBC MDA-MB-231 cell viability, proliferation, and migration in a time- and concentration-dependent manner, without having any effect on nontumoral breast epithelial MCF10A cells. Pretreatment with different concentrations of melatonin significantly reduced SOCE in MDA-MB-231 cells without altering Ca2+ release from the intracellular stores. By contrast, SOCE in MCF10A cells was unaffected by melatonin. In the TNBC MDA-MB-468 cell line, melatonin not only attenuated viability, migration, and SOCE, but also reduced TRPC6 expression in a time- and concentration-dependent manner, without altering expression or function of the Ca2+ channel Orai1. The expression of exogenous TRPC6 overcame the effect of melatonin on SOCE and cell proliferation, and silencing or inhibition of TRPC6 impaired the inhibitory effect of melatonin on SOCE. These findings indicate that TRPC6 downregulation might be involved in melatonin's inhibitory effects on Ca2+ influx and the maintenance of cancer hallmarks and point toward a novel antitumoral mechanism of melatonin in TNBC cells.Supported by MICINN (Grants BFU2016-74932-C2-1-P, BFU2016-74932-C2-2-P, PID2019-104084GB-C21 and PID2019-104084GB-C22) and Junta de Extremadura-Fondo Europeo de Desarrollo Regional (Grants IB16046 and GR18061). S. A., R. D.-B., and I. J. (contract TA18054) are supported by contracts from Junta de Extremadura-FEDER. D. F. is supported by Jordi Soler grant from CIBERCV (ISCIII, Madrid)

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018) : a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    No full text
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    No full text
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points
    corecore