10 research outputs found

    The ANZUS Treaty during the Cold War: a reinterpretation of U.S. diplomacy in the Southwest Pacific

    Get PDF
    This article explains the origins of the Australia–New Zealand–United States (ANZUS) Treaty by highlighting U.S. ambitions in the Pacific region after World War II. Three clarifications to the historiography merit attention. First, an alliance with Australia and New Zealand reflected the pursuit of U.S. interests rather than the skill of antipodean diplomacy. Despite initial reservations in Washington, geostrategic anxiety and economic ambition ultimately spurred cooperation. The U.S. government's eventual recourse to coercive diplomacy against the other ANZUS members, and the exclusion of Britain from the alliance, substantiate claims of self-interest. Second, the historiography neglects the economic rationale underlying the U.S. commitment to Pacific security. Regional cooperation ensured the revival of Japan, the avoidance of discriminatory trade policies, and the stability of the Bretton Woods monetary system. Third, scholars have unduly played down and misunderstood the concept of race. U.S. foreign policy elites invoked ideas about a “White Man's Club” in Asia to obscure the pursuit of U.S. interests in the region and to ensure British exclusion from the treaty

    Anti-Proliferation and Anti-Invasion Effects of Diosgenin on Gastric Cancer BGC-823 Cells with HIF-1α shRNAs

    Get PDF
    Drug resistance is a major factor for the limited efficacy of chemotherapy in gastric cancer treatment. Hypoxia-inducible factor-1α (HIF-1α), a central transcriptional factor in hypoxia, is suggested to participate in the resistance. Here, we identified a hypoxia-mimic (cobalt chloride) sensitive gastric cell line BGC-823 to explore whether diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated BGC-823 cells. In addition, when combined with HIF-1α specific short hairpin RNA (shRNA), diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of diosgenin may be related to E-cadherin, integrinα5 and integrin β6. These results suggest that diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, especially when combined with down-regulated HIF-1α

    Bi-allelic loss-of-function CACNA1B mutations in progressive epilepsy-dyskinesia

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment

    Antisense Oligonucleotides and siRNA as Specific Inhibitors of Gene Expression: Mechanisms of Action and Therapeutic Potential

    No full text

    Publisher Correction: Whole-genome sequencing of a sporadic primary immunodeficiency cohort (Nature, (2020), 583, 7814, (90-95), 10.1038/s41586-020-2265-1)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia

    Full text link

    Whole-genome sequencing of a sporadic primary immunodeficiency cohort

    Get PDF
    Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans

    The clinical relevance of visualising the peripheral retina

    No full text
    corecore