22 research outputs found

    Measurement of the t(t)over-bar production cross section in pp collisions at root s=7 TeV in dilepton final states containing a tau

    Get PDF
    The top quark pair production cross section is measured in dilepton events with one electron or muon, and one hadronically decaying tau lepton from the decay t (t) over bar -> (l nu(l))((sic)(h)nu((sic)))b (b) over bar, (l = e, mu). The data sample corresponds to an integrated luminosity of 2.0 fb(-1) for the electron channel and 2.2 fb(-1) for the muon channel, collected by the CMS detector at the LHC. This is the first measurement of the t (t) over bar cross section explicitly including tau leptons in proton- proton collisions at root s = 7 TeV. The measured value sigma(t (t) over bar) = 143 +/- 14(stat) +/- 22(syst) +/- 3(lumi) pb is consistent with the standard model predictions

    Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at root s=7 TeV

    Get PDF
    Copyright @ 2013 CERN, for the bene t of the CMS collaboration. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5 (4.8) fb−1 in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at s√ = 7 TeV. The measured inclusive cross section in the Z-peak region (60–120 GeV) is σ(ℓℓ) = 986.4 ± 0.6 (stat.) ± 5.9 (exp. syst.) ± 21.7 (th. syst.) ± 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections dσ/dm for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section d2σ/dm d|y| in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.The Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scienti que, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent nancing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucl eaire et de Physique des Particules / CNRS, and Commissariat a l' Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium f ur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scienti c Research Foundation, and National Innovation O ce, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Funda c~ao para a Ci^encia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretar a de Estado de Investigaci on, Desarrollo e Innovaci on and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scienti c and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation

    Relative Modification of Prompt psi(2S) and J/psi Yields from pp to PbPb Collisions at root(S)(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Search for lepton-flavour-violating decays of the Higgs boson

    Get PDF
    Peer reviewe

    Diseases of the Placenta

    No full text
    corecore