233 research outputs found

    Large-pTp_T Inclusive π0\pi^0 Production in Heavy-Ion Collisions at RHIC and LHC

    Full text link
    We present results for the large-pTp_T inclusive π0\pi^0 production in p-p and A-A collisions at RHIC and LHC energies. We include the full next-to-leading order radiative corrections, O(αs3)O(\alpha_s^3), and nuclear effects such as parton energy loss and nuclear shadowing. We find the next-to-leading order corrections and the parton energy loss effect to be large and pTp_T dependent, while the nuclear shadowing effects are small (<10< 10%). We calculate the ratio of prompt photons to neutral pions produced in heavy ion collisions and show that at RHIC energies this ratio increases with pTp_T approaching one at pT8p_T \sim 8 GeV, due to the large suppression of π0\pi^0 production. We show that at the LHC, this ratio has a steep pTp_T dependence and approaches 25% effect at pT40p_T \sim 40 GeV. We discuss theoretical uncertainties inherent in our calculation, such as choice of the renormalization, factorization and fragmentation scales and the K-factors which signify the size of higher-order corrections.Comment: minor corrections, version accepted for publication in Nuclear Physics

    Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles

    Get PDF
    The straightforward production and dose-controlled administration of protein therapeutics remain major challenges for the biopharmaceutical manufacturing and gene therapy communities. Transgenes linked to HIV-1-derived vpr and pol-based protease cleavage (PC) sequences were co-produced as chimeric fusion proteins in a lentivirus production setting, encapsidated and processed to fusion peptide-free native protein in pseudotyped lentivirions for intracellular delivery and therapeutic action in target cells. Devoid of viral genome sequences, protein-transducing nanoparticles (PTNs) enabled transient and dose-dependent delivery of therapeutic proteins at functional quantities into a variety of mammalian cells in the absence of host chromosome modifications. PTNs delivering Manihot esculenta linamarase into rodent or human, tumor cell lines and spheroids mediated hydrolysis of the innocuous natural prodrug linamarin to cyanide and resulted in efficient cell killing. Following linamarin injection into nude mice, linamarase-transducing nanoparticles impacted solid tumor development through the bystander effect of cyanid

    Therapeutic protein transduction of mammalian cells and mice by nucleic acid-free lentiviral nanoparticles

    Get PDF
    The straightforward production and dose-controlled administration of protein therapeutics remain major challenges for the biopharmaceutical manufacturing and gene therapy communities. Transgenes linked to HIV-1-derived vpr and pol-based protease cleavage (PC) sequences were co-produced as chimeric fusion proteins in a lentivirus production setting, encapsidated and processed to fusion peptide-free native protein in pseudotyped lentivirions for intracellular delivery and therapeutic action in target cells. Devoid of viral genome sequences, protein-transducing nanoparticles (PTNs) enabled transient and dose-dependent delivery of therapeutic proteins at functional quantities into a variety of mammalian cells in the absence of host chromosome modifications. PTNs delivering Manihot esculenta linamarase into rodent or human, tumor cell lines and spheroids mediated hydrolysis of the innocuous natural prodrug linamarin to cyanide and resulted in efficient cell killing. Following linamarin injection into nude mice, linamarase-transducing nanoparticles impacted solid tumor development through the bystander effect of cyanide

    Orthoparamyxovirinae C Proteins Have a Common Origin and a Common Structural Organization

    Get PDF
    The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.French Agence Nationale de la RechercheFond de la Recherche Médicale (FRM)Grenoble Instruct-ERIC centerFRISBIUniversity Grenoble Alpes graduate school (Ecoles Universitaires de Recherche)Peer Reviewe

    Diagnostic Value of FDG PET-CT Quantitative Parameters and Deauville-Like 5 Point-Scale in Predicting Malignancy of Focal Thyroid Incidentaloma

    Get PDF
    Objective: To evaluate the diagnostic value of FDG PET-CT metabolic parameters and Deauville-like 5 point-scale to predict malignancy in a population of patients presenting focal thyroid incidentaloma (fTI).Design: This retrospective study included 41 fTI, classified according to cytological and histological data as benign (BL) or malignant lesion (ML). FDG PET-CT semi-quantitative parameters (SUVmax, SUVmean, SUVpeak, MTV, TLG), tumor to liver SUVmean ratio (TLRmax and TLRmean), tumor to blood-pool SUVmean ratio (TBRmax and TBRmean) were calculated. Each fTI was also classified on a Deauville-like 5-point scale (DS) currently used in lymphoma. Comparison between BL and ML was performed for each parameter and a ROC analysis was conducted.Results: All quantitative PET metabolic parameters (SUV parameters, volume based parameters and SUV ratio) were higher in ML compared with BL, yet no significant difference was reported. fTI (uptake) malignancy rate according to DS grades 2, 3, 4, and 5 was, respectively, 25% (1 of 4), 28.6% (2 of 7), 8.3% (1 of 12), and 33.3% (6 of 18) with no significant difference between ML and BL groups. Results of ROC analysis showed that mean TBR had the highest AUC in our cohort (0.66 95%CI [0.41; 0.91]) with a cut-off value of 2.2. Specificity of MTV and TLG was 100% (cut-off values: MTV 9.6 ml, TLG 22.9 g) and their sensitivity was 30 and 40%, respectively.Conclusion: Our study did not highlight any FDG PET/CT parameter predictor of fTI malignancy

    Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data

    Full text link
    The impact of isolated-photon data from proton-(anti)proton collisions at RHIC, SppbarS, Tevatron and LHC energies, on the parton distribution functions of the proton is studied using a recently developed Bayesian reweighting method. The impact on the gluon density of the 35 existing isolated-gamma measurements is quantified using next-to-leading order (NLO) perturbative QCD calculations complemented with the NNPDF2.1 parton densities. The NLO predictions are found to describe well most of the datasets from 200 GeV up to 7 TeV centre-of-mass energies. The isolated-photon spectra recently measured at the LHC are precise enough to constrain the gluon distribution and lead to a moderate reduction (up to 20%) of its uncertainties around fractional momenta x~0.02. As a particular case, we show that the improved gluon density reduces the PDF uncertainty for the Higgs boson production cross section in the gluon-fusion channel by more than 20% at the LHC. We conclude that present and future isolated-photon measurements constitute an interesting addition to coming global PDF analyses.Comment: 30 pages, 20 figures. Few minor changes to match the published NPB versio

    Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells

    Get PDF
    Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.Career Development Award: (#IK2 CX000538); U.S. Department of Veterans Affairs Clinical Sciences Research and Development Program (MJH); U.S.Department of Veterans Affairs Biomedical Laboratory Research and Development Program (DML) Merit Award: (#I01 BX000533); American Lung Association: (RT-350058)

    Netrin-1 acts as a survival factor for aggressive neuroblastoma

    Get PDF
    Neuroblastoma (NB), the most frequent solid tumor of early childhood, is diagnosed as a disseminated disease in >60% of cases, and several lines of evidence support the resistance to apoptosis as a prerequisite for NB progression. We show that autocrine production of netrin-1, a multifunctional laminin-related molecule, conveys a selective advantage in tumor growth and dissemination in aggressive NB, as it blocks the proapoptotic activity of the UNC5H netrin-1 dependence receptors. We show that such netrin-1 up-regulation is a potential marker for poor prognosis in stage 4S and, more generally, in NB stage 4 diagnosed infants. Moreover, we propose that interference with the netrin-1 autocrine loop in malignant neuroblasts could represent an alternative therapeutic strategy, as disruption of this loop triggers in vitro NB cell death and inhibits NB metastasis in avian and mouse models

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters
    corecore