1,033 research outputs found

    A dusty pinwheel nebula around the massive star WR 104

    Get PDF
    Wolf-Rayet (WR) stars are luminous massive blue stars thought to be immediate precursors to the supernova terminating their brief lives. The existence of dust shells around such stars has been enigmatic since their discovery some 30 years ago; the intense radiation field from the star should be inimical to dust survival. Although dust-creation models, including those involving interacting stellar winds from a companion star, have been put forward, high-resolution observations are required to understand this phenomena. Here we present resolved images of the dust outflow around Wolf-Rayet WR 104, obtained with novel imaging techniques, revealing detail on scales corresponding to about 40 AU at the star. Our maps show that the dust forms a spatially confined stream following precisely a linear (or Archimedian) spiral trajectory. Images taken at two separate epochs show a clear rotation with a period of 220 +/- 30 days. Taken together, these findings prove that a binary star is responsible for the creation of the circumstellar dust, while the spiral plume makes WR 104 the prototype of a new class of circumstellar nebulae unique to interacting wind systems.Comment: 7 pages, 2 figures, Appearing in Nature (1999 April 08

    Lowe syndrome

    Get PDF
    Lowe syndrome (the oculocerebrorenal syndrome of Lowe, OCRL) is a multisystem disorder characterised by anomalies affecting the eye, the nervous system and the kidney. It is a uncommon, panethnic, X-linked disease, with estimated prevalence in the general population of approximately 1 in 500,000. Bilateral cataract and severe hypotonia are present at birth. In the subsequent weeks or months, a proximal renal tubulopathy (Fanconi-type) becomes evident and the ocular picture may be complicated by glaucoma and cheloids. Psychomotor retardation is evident in childhood, while behavioural problems prevail and renal complications arise in adolescence. The mutation of the gene OCRL1 localized at Xq26.1, coding for the enzyme phosphatidylinositol (4,5) bisphosphate 5 phosphatase, PtdIns (4,5)P2, in the trans-Golgi network is responsible for the disease. Both enzymatic and molecular testing are available for confirmation of the diagnosis and for prenatal detection of the disease. The treatment includes: cataract extraction, glaucoma control, physical and speech therapy, use of drugs to address behavioural problems, and correction of the tubular acidosis and the bone disease with the use of bicarbonate, phosphate, potassium and water. Life span rarely exceeds 40 years

    Radio & Optical Interferometry: Basic Observing Techniques and Data Analysis

    Full text link
    Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practitioners avoid unnecessary confusion and common pitfalls. Concepts essential for writing observing proposals and for planning observations are described, depending on the science wavelength, angular resolution, and field of view required. Atmospheric and ionospheric turbulence degrades the longest-baseline observations by significantly reducing the stability of interference fringes. Such instabilities represent a persistent challenge, and the basic techniques of phase-referencing and phase closure have been developed to deal with them. Synthesis imaging with large observing datasets has become a routine and straightforward process at radio observatories, but remains challenging for optical facilities. In this context the commonly-used image reconstruction algorithms CLEAN and MEM are presented. Lastly, a concise overview of current facilities is included as an appendix.Comment: 45 pages, 14 Figures; an abridged version of a chapter to appear in Volume 2 of Planets, Stars and Stellar Systems, to be published in 2011 by Springe

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    A dusty torus around the luminous young star LkHa 101

    Get PDF
    A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk, through which matter is fed onto the embryonic star at the center of the disk. When the temperature and density at the center of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. Unfortunately this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present resolved images of a young star, LkHa 101 in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions, and we infer that the position of the inner edge is probably determined by sublimation of dust grains by direct stellar radiation, rather than by disk reprocessing or the viscous heating processes as usually assumed.Comment: 7 pages, 1 figure. Appears in Nature, 22 Feb, 2001 (Vol 409

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore