1,092 research outputs found
Universal Quantum Computation with the Exchange Interaction
Experimental implementations of quantum computer architectures are now being
investigated in many different physical settings. The full set of requirements
that must be met to make quantum computing a reality in the laboratory [1] is
daunting, involving capabilities well beyond the present state of the art. In
this report we develop a significant simplification of these requirements that
can be applied in many recent solid-state approaches, using quantum dots [2],
and using donor-atom nuclear spins [3] or electron spins [4]. In these
approaches, the basic two-qubit quantum gate is generated by a tunable
Heisenberg interaction (the Hamiltonian is between spins and ), while the one-qubit gates require the control
of a local Zeeman field. Compared to the Heisenberg operation, the one-qubit
operations are significantly slower and require substantially greater materials
and device complexity, which may also contribute to increasing the decoherence
rate. Here we introduce an explicit scheme in which the Heisenberg interaction
alone suffices to exactly implement any quantum computer circuit, at a price of
a factor of three in additional qubits and about a factor of ten in additional
two-qubit operations. Even at this cost, the ability to eliminate the
complexity of one-qubit operations should accelerate progress towards these
solid-state implementations of quantum computation.Comment: revtex, 2 figures, this version appeared in Natur
Nodal dynamics, not degree distributions, determine the structural controllability of complex networks
Structural controllability has been proposed as an analytical framework for
making predictions regarding the control of complex networks across myriad
disciplines in the physical and life sciences (Liu et al.,
Nature:473(7346):167-173, 2011). Although the integration of control theory and
network analysis is important, we argue that the application of the structural
controllability framework to most if not all real-world networks leads to the
conclusion that a single control input, applied to the power dominating set
(PDS), is all that is needed for structural controllability. This result is
consistent with the well-known fact that controllability and its dual
observability are generic properties of systems. We argue that more important
than issues of structural controllability are the questions of whether a system
is almost uncontrollable, whether it is almost unobservable, and whether it
possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page
Diets containing sea cucumber (Isostichopus badionotus) meals are hypocholesterolemic in young rats
Peer reviewedPublisher PD
Effects of temperature on thick branes and the fermion (quasi-)localization
Following Campos's work [Phys. Rev. Lett. 88, 141602 (2002)], we investigate
the effects of temperature on flat, de Sitter (dS), and anti-de Following
Campos's work [Phys. Rev. Lett. \textbf{88}, 141602 (2002)], we investigate the
effects of temperature on flat, de Sitter (dS), and anti-de Sitter (AdS) thick
branes in five-dimensional (5D) warped spacetime, and on the fermion
(quasi-)localization. First, in the case of flat brane, when the critical
temperature reaches, the solution of the background scalar field and the warp
factor is not unique. So the thickness of the flat thick brane is uncertain at
the critical value of the temperature parameter, which is found to be lower
than the one in flat 5D spacetime. The mass spectra of the fermion Kaluza-Klein
(KK) modes are continuous, and there is a series of fermion resonances. The
number and lifetime of the resonances are finite and increase with the
temperature parameter, but the mass of the resonances decreases with the
temperature parameter. Second, in the case of dS brane, we do not find such a
critical value of the temperature parameter. The mass spectra of the fermion KK
modes are also continuous, and there is a series of fermion resonances. The
effects of temperature on resonance number, lifetime, and mass are the same
with the case of flat brane. Last, in the case of AdS brane, {the critical
value of the temperature parameter can less or greater than the one in the flat
5D spacetime.} The spectra of fermion KK modes are discrete, and the mass of
fermion KK modes does not decrease monotonically with increasing temperature
parameter.Comment: 24 pages, 15 figures, published versio
Photonic quantum technologies
The first quantum technology, which harnesses uniquely quantum mechanical
effects for its core operation, has arrived in the form of commercially
available quantum key distribution systems that achieve enhanced security by
encoding information in photons such that information gained by an eavesdropper
can be detected. Anticipated future quantum technologies include large-scale
secure networks, enhanced measurement and lithography, and quantum information
processors, promising exponentially greater computation power for particular
tasks. Photonics is destined for a central role in such technologies owing to
the need for high-speed transmission and the outstanding low-noise properties
of photons. These technologies may use single photons or quantum states of
bright laser beams, or both, and will undoubtably apply and drive
state-of-the-art developments in photonics
Microtubules gate tau condensation to spatially regulate microtubule functions.
Tau is an abundant microtubule-associated protein in neurons. Tau aggregation into insoluble fibrils is a hallmark of Alzheimer's disease and other types of dementia1, yet the physiological state of tau molecules within cells remains unclear. Using single-molecule imaging, we directly observe that the microtubule lattice regulates reversible tau self-association, leading to localized, dynamic condensation of tau molecules on the microtubule surface. Tau condensates form selectively permissible barriers, spatially regulating the activity of microtubule-severing enzymes and the movement of molecular motors through their boundaries. We propose that reversible self-association of tau molecules, gated by the microtubule lattice, is an important mechanism of the biological functions of tau, and that oligomerization of tau is a common property shared between the physiological and disease-associated forms of the molecule
Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms
Fermionic alkaline-earth atoms have unique properties that make them
attractive candidates for the realization of novel atomic clocks and degenerate
quantum gases. At the same time, they are attracting considerable theoretical
attention in the context of quantum information processing. Here we demonstrate
that when such atoms are loaded in optical lattices, they can be used as
quantum simulators of unique many-body phenomena. In particular, we show that
the decoupling of the nuclear spin from the electronic angular momentum can be
used to implement many-body systems with an unprecedented degree of symmetry,
characterized by the SU(N) group with N as large as 10. Moreover, the interplay
of the nuclear spin with the electronic degree of freedom provided by a stable
optically excited state allows for the study of spin-orbital physics. Such
systems may provide valuable insights into strongly correlated physics of
transition metal oxides, heavy fermion materials, and spin liquid phases.Comment: 15 pages, 10 figures. V2: extended experimental accessibility and
Kondo sections in the main text (including new Fig. 5b) and in the Methods;
reorganized other parts; added reference
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Quantum Computing
Quantum mechanics---the theory describing the fundamental workings of
nature---is famously counterintuitive: it predicts that a particle can be in
two places at the same time, and that two remote particles can be inextricably
and instantaneously linked. These predictions have been the topic of intense
metaphysical debate ever since the theory's inception early last century.
However, supreme predictive power combined with direct experimental observation
of some of these unusual phenomena leave little doubt as to its fundamental
correctness. In fact, without quantum mechanics we could not explain the
workings of a laser, nor indeed how a fridge magnet operates. Over the last
several decades quantum information science has emerged to seek answers to the
question: can we gain some advantage by storing, transmitting and processing
information encoded in systems that exhibit these unique quantum properties?
Today it is understood that the answer is yes. Many research groups around the
world are working towards one of the most ambitious goals humankind has ever
embarked upon: a quantum computer that promises to exponentially improve
computational power for particular tasks. A number of physical systems,
spanning much of modern physics, are being developed for this task---ranging
from single particles of light to superconducting circuits---and it is not yet
clear which, if any, will ultimately prove successful. Here we describe the
latest developments for each of the leading approaches and explain what the
major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53
(4 March 2010). Published version is more up-to-date and has several
corrections, but is half the length with far fewer reference
?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH
Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA
- …
