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Abstract

Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction
between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of b2-
microglobulin (b2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic
lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which b2m-lipid interactions
occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of b2m
monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal
microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-
induced membrane damage. We show that b2m fibril-induced membrane disruption is modulated by anionic lipid
composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for
liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in
the endocytic pathway. The results suggest that the interaction between b2m fibrils and membranes of endosomal origin
may play a role in the molecular mechanism of b2m amyloid-associated osteoarticular tissue destruction in DRA.
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Introduction

The aggregation of proteins into amyloid fibrils is associated

with many debilitating disorders, including type II diabetes

mellitus, Alzheimer’s, Parkinson’s, Creutzfeldt-Jakob disease and

dialysis-related amyloidosis (DRA) [1]. The assembly of normally

soluble proteins and peptides into amyloid fibrils occurs through a

process of nucleated polymerization and elongation [2–4] where,

irrespective of primary sequence, a common cross-b molecular

architecture is adopted [5,6]. However, fibrils of different

morphologies or super-structural features may be formed, even

from the same starting material, resulting in an enormous

complexity and heterogeneity of species populated during amyloid

fibril formation [1,5,7,8].

Numerous studies have linked the cell death and tissue damage

associated with amyloid diseases to the existence of oligomers

formed early in the process of protein aggregation, rather than late

stage amyloid fibrils or plaques (see for example [9–11]). However,

there is also evidence that fibrils can exhibit cytotoxic potential

that is modulated by fibril morphology, fibril length and particle

concentration [1,12–15]. Although the molecular and cellular

mechanisms of amyloid cytotoxicity remain unclear [1,16,17], it is

becoming increasingly apparent that cellular membranes are a

target for amyloid cytotoxicity [16,18]. Cellular interfaces,

particularly charged membranes, have been shown to promote

protein misfolding and fibril formation (see for example [19–22]),

and numerous studies have indicated that cellular membranes can

be susceptible to damage by amyloid species (see for example [23–

26]).

The specialized lipid compositions of cellular and intracellular

membranes facilitate specific exchange of biological materials and

enable homeostasis of the internal chemical environment [27]. It

has been suggested that amyloid-induced membrane damage may

result in disruption of cellular compartmentalization, loss of

chemical potential gradients across the membrane, disruption of

membrane-mediated signalling pathways and/or energetic dys-

function, leading to amyloid-mediated cytotoxicity (reviewed in

[26,28]). Hence, the lipid composition and charge state of the

membrane, and the chemical environment in which amyloid-lipid
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interactions occur in vivo, may play a role in the manifestation of

amyloid cytotoxicity.

Here we utilize b2-microglobulin (b2m), a 99-residue protein

with an immunoglobulin fold [29], to investigate the effect of lipid

composition and pH on the interaction between amyloid fibrils

and lipid bilayers. b2m, the light chain of the human major

histocompatibility class I complex, forms amyloid fibrils associated

with DRA, a debilitating osetoarticular complication of long-term

hemodialysis [5,30]. A single point mutation in the sequence of

b2m (Asp76Asn) has also been implicated in a hereditary systemic

amyloidosis [31]. b2m fibrils with a long straight morphology,

similar to those observed in ex vivo DRA plaques, are readily

formed in vitro at low pH and low ionic strength [32,33]. By

contrast, at neutral pH the native monomer of b2m is unable to

assemble into amyloid fibrils (within an experimentally accessible

timescale) in the absence of additional additives such as Cu2+ [34],

heparin [35], trifluoroethanol [36] or lysophospholipids [37].

Upon interaction with asolectin lipid bilayers, monomeric b2m

has been shown to form relatively non-selective, voltage indepen-

dent ion channels [38]. Xue et al [14] have also demonstrated that

interaction of liposomes with b2m fibrils results in membrane

damage that is detectable by dye release experiments. This b2m

fibril-induced membrane damage is also paralleled by a decrease

in apparent cell viability, as measured by the reduction of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

[14]. Mechanical agitation of long straight b2m fibrils results in

fibril fragmentation, hence an increase in fibril particle concen-

tration and a reduction in average fibril length [39,40]. At equal

monomer-equivalent concentrations, fragmented b2m fibrils have

been shown to cause greater membrane damage than their

unfragmented counterparts, despite the fragmented fibrils main-

taining an identical structure [14]. Cryo-electron tomography

imaging of fragmented b2m amyloid fibrils in the presence of

synthetic liposomes has shown that fibril-lipid interactions occur

primarily at the fibril ends, resulting in membrane distortion and

removal, or blebbing, of the outer membrane leaflet [41].

Membrane damage induced by b2m fibrils is also affected by

some, but not all, polyphenols and long-chain, but not short-chain,

glycosaminoglycans (GAGs) [42], further demonstrating a com-

plex interplay between b2m amyloid structure, fibril stability and

interactions with lipid membranes.

To unravel the mechanism(s) of b2m fibril-induced membrane

damage, a greater understanding of amyloid-lipid interactions is

required. Here we examine membrane damage resulting from the

interaction of b2m monomers, fragmented and unfragmented

fibrils with lipid bilayers using dye release, tryptophan fluorescence

quenching and confocal microscopy assays. Liposomes containing

the anionic lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-

serine (POPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(19-rac-

glycerol) (POPG) and bis(monoacylglycero)phosphate (BMP), a

structurally unusual lipid also known as lysobisphosphatidic acid

which is principally localized to membranes of endosomal origin

[43–45], were investigated (Fig. 1A). We demonstrate that b2m

fibril-induced membrane damage is modulated by lipid compo-

sition and pH, with membrane damage being enhanced by the

presence of anionic lipids at acidic pH. Strikingly, compared with

POPS-, and to a lesser extent POPG-containing membranes,

which are relatively resistant to treatment with b2m fibrils,

considerable membrane damage is observed for BMP-containing

membranes at acidic pH, conditions likely to be encountered by

b2m amyloid fibrils in the endocytic pathway [45]. Combined with

previous experiments which have shown endocytic uptake of b2m

fibrils by macrophages [46] and the inability of monocytes and

macrophages to degrade b2m fibrils [46–48], the biophysical

observations presented here suggest that disruption of endosome

function, as a result of b2m fibril-lipid interactions, may play a role

in b2m amyloid pathology.

Materials and Methods

Expression and purification of b2m
b2m was expressed recombinantly in E. coli [33] and purified

from inclusion bodies as previously described [49]. Purified

monomeric b2m was dialyzed into deionized water and stored as

a lyophilized powder at 220uC. The native monomer of b2m has

been shown to be stably folded at pH 7.4 [49,50]. b2m monomer

was resuspended to a concentration of 120 mM in 10 mM sodium

phosphate buffer, 50 mM NaCl, pH 7.4, prepared as fibrils, or

fluorescently labeled as described below.

Figure 1. Lipid structures and characterization of b2m fibrils
using AFM. (A) Structure of anionic lipids, POPS, POPG and BMP. (B)
Fibril length distributions and representative AFM images of (i)
unfragmented (1.3060.05 mm) and (ii) fragmented (0.3060.01 mm)
b2m fibrils. Scale bar 1 mm.
doi:10.1371/journal.pone.0104492.g001
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b2m fibril preparation
Long straight b2m fibrils were prepared at pH 2.0 by seeding

monomers with de novo formed fibrils as previously described

[14]. Briefly, lyophilized b2m monomer was dissolved and diluted

to a final concentration of 120 mM in 10 mM sodium dihydrogen

phosphate, 50 mM NaCl adjusted to pH 2.0 using HCl. The

reaction mixture was immediately syringe-filtered (0.2 mm Minis-

art fast flow, Sartorious Stedim Biotech) prior to setting up fibril

growth reactions. De novo formed b2m fibrils used for seeding

were formed by vigorously agitating the sample for 3 days and

unfragmented fibrils were then formed by addition of 0.1% (w/w)

seed to 120 mM b2m monomer and incubation under quiescent

conditions for 48 h. These unfragmented fibrils were subsequently

agitated vigorously for 48 h to form fragmented fibrils. All fibrils

were prepared at 25uC and all agitation steps were performed by

stirring 500 ml of sample in a 1.5 ml glass vial containing a 368

mm polytetrafluoroethylene-coated magnetic stirring bar at

1,000 rpm using a custom-made precision stirrer (built by the

workshop of the School of Physics and Astronomy, University of

Leeds) [14]. Under the conditions employed all fibril solutions

were translucent without visible turbidity, indicating that the

samples contain well-dispersed fibrils.

Characterization of fibrils by atomic force microscopy
(AFM)

Unfragmented and fragmented b2m fibrils were imaged by

tapping mode AFM and these images were processed to determine

the weight average fibril length and fibril particle concentration

using the method described previously [14,39,40].

Preparation of lipid vesicles
Lipids were purchased from Avanti Polar Lipids (Birmingham,

Al, USA) as follows: synthetic phospholipids 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC - 850457P), 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE – 850757P),

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS – 840034P),

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(19-rac-glycerol) (POPG

– 840457P), bis(monoaclglycero)phosphate (BMP -857133P),

1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS – 840035P),

1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine

rhodamine B sulfonyl) (rhodamine labelled DOPE - 810157P),

sphingomyelin purified from porcine brain (SM – 860062P); and

cholesterol purified from ovine wool (700000P). 1,2-dioleoyl-sn-

glycero-3-phosphocholine (DOPC – P6354) and 1,2-dioleoyl-

sn-glycero-3-phospho-(19-rac-glycerol) (DOPG – P9664) were

purchased from Sigma-Aldrich (Dorset, UK).

Large unilamellar vesicles (LUVs) were prepared from two

different sets of lipid compositions: i) simple lipid mixtures

containing 75 mol % POPC or POPG, plus 25 mol % cholesterol;

or ii) complex lipid mixtures containing 0, 12 or 50 mol % anionic

lipid (POPG, POPS or BMP (Fig. 1A)). To enable direct

comparison across the different anionic lipid components, the

remaining lipids of the complex lipid mixtures were made up of

zwitterionic components in a mol/mol ratio of 36 POPC: 20

POPE: 7 SM: 25 cholesterol (Table S1,). Typically, 0.2% mol/mol

rhodamine labelled DOPE was also included to enable determi-

nation of the lipid concentration. All lipid components were

dissolved in chloroform and mixed in the appropriate ratio. The

solvent was evaporated under a stream of N2 gas to form a thin

lipid film over the bottom of a glass tube and the lipid mixture was

further dried under vacuum for approximately 3 h. Lipids were

rehydrated to a final concentration of 10–25 mM for $30 min,

typically in Assay Buffer (50 mM composite citric acid –

monosodium phosphate buffer (Table S2), 107 mM NaCl,

1 mM EDTA) at pH 7.4 unless specified otherwise. The buffer

was carefully chosen so as to be iso-osmotically balanced to the CF

buffer in the vesicles’ interior (see below), whilst ensuring that the

ionic strength did not vary widely over the pH range used. The

resulting lipid suspension was typically put through 5 rapid freeze-

thaw cycles before being extruded through 400 nm polycarbonate

filters using a Mini-Extruder apparatus (Avanti) to produce LUVs.

To ensure lipid integrity, all LUVs were stored on ice and used

within two days of extrusion.

Giant unilamellar vesicles (GUVs) were prepared by electro-

formation. Briefly, solutions of 100 mol % DOPC or 80 mol %

DOPC plus 20 mol % BMP were prepared in chloroform to a

total lipid concentration of 1 mM, supplemented with the

lipophilic fluorescent probe 1,19-dioctadecyl-3,3,39,39-tetramethy-

lindodicarbocyanine perchlorate (DiD) (Molecular Probes, D-307)

at 0.5 % mol/mol. Yields of GUVs prepared by electroformation

using .20 mol % BMP or pH,6.5 were low, and hence these

vesicles were unsuitable for confocal microscopy. Aliquots of 70 ml

lipid solution were placed dropwise on the platinum wires of an

electroformation chamber (built in-house) and dried under

vacuum for at least 2 h. The resulting lipid films were hydrated

in un-buffered 350 mM sucrose solution. The sucrose concentra-

tion inside the vesicles was selected to match the osmolarity of the

Assay Buffer. The low ionic strength solutions used for GUV

preparation are required to ensure optimal vesicle yield. GUVs

were formed at room temperature by applying a 2.5 a.c. electric

field across the wires at 10 Hz for 45 min, followed by 3 Hz for

20 min, 1 Hz for 7–10 min and 0.5 Hz for 5–7 min. GUVs were

then collected from the chamber, stored at 4uC and used within

one day of preparation.

Spectrofluorometric assays
All steady-state florescence emission measurements were per-

formed at 37uC using a QuantaMaster spectrofluorometer (Photon

Technology International, West Sussex, UK). Excitation and

emission bandwidths were set at 4–8 nm. Tryptophan fluores-

cence was excited at 290 nm, and fluorescence emission was

monitored from 300–500 nm, while the excitation wavelength for

carboxyfluorescein (CF) was set to 492 nm and emission was

monitored from 500–625 nm or 513 nm for continuous kinetic

experiments.

Carboxyfluorescein dye release assays
The release of CF dye from LUVs was used to measure

membrane disruption upon interaction with b2m using an

adaptation of the method previously described [14]. CF fluores-

cence is pH sensitive. CF also has limited solubility, particularly at

acidic pH. For all dye release experiments presented herein, CF

was encapsulated in LUVs at pH 7.4 and high concentration

(50 mM), conditions in which CF fluorescence is primarily self-

quenched [51]. Lipids were extruding in the presence of 50 mM

5(6)-carboxyfluorescein (21877, Sigma-Aldrich) and excess CF was

removed from the exterior of the resulting vesicles by centrifuging

several times (20 min, ,13,0006g in a micro-centrifuge) and

resuspending the CF-loaded LUV pellet in CF-free buffer, as

described below. For each dye release measurement, b2m

monomers, fragmented or unfragmented fibrils were diluted

directly from the original 120 mM stock and incubated with the

CF-loaded LUVs in a total volume of 200 ml at pH 4.5–7.4, 37uC.

Unless indicated otherwise, a fibril concentration of 6 mM

monomer equivalent and LUV concentration of 5 mM lipid

molecule equivalent were used. For all experiments, irrespective of

the pH of incubation, the pH was adjusted to 7.4 immediately

b2m Fibril Interactions
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before measuring CF fluorescence. Hence, CF fluorescence was

always measured at pH 7.4, allowing direct comparison of the

fluorescence arising from CF encapsulated in, and released from,

the LUV interior.

CF release kinetics were monitored continuously at pH 7.4 for

liposomes consisting of the simple lipid mixtures loaded with CF
Buffer (50 mM HEPES, 10 mM NaCl, 1 mM EDTA pH 7.4 plus

50 mM CF) on the vesicle interior and Buffer A (50 mM HEPES,

107 mM NaCl, 1 mM EDTA pH 7.4) on the vesicle exterior. At

pH 4.5, CF release was monitored discontinuously. LUVs were

loaded with CF Buffer on the vesicle interior and Buffer B
(50 mM MES, 107 mM NaCl, 1 mM EDTA pH 4.5) was used for

the vesicle exterior. A separate sample was measured for each time

point. The pH was adjusted by adding 1 ml of Buffer A
immediately before measuring CF fluorescence.

CF release from the complex lipid mixtures was measured for

LUVs loaded with 50 mM sodium phosphate, 10 mM NaCl,

1 mM EDTA pH 7.4 plus 50 mM CF on the vesicle interior, with

Assay Buffer at pH 4.5, 5.5, 6.5 or 7.4 (Table S2) on the vesicle

exterior. Following 10 min incubation with the protein, the pH of

each CF release sample was adjusted by adding 1 ml Assay Buffer
at pH 7.4 immediately before measuring CF fluorescence.

For all CF release measurements, the percentage of dye release

was determined as the ratio of fluorescence intensity upon dye

release (F) to the CF fluorescence of maximal dye release (FT)

measured after dissolution of the lipid vesicles with 2% (v/v)

Triton X-100 incubated at 37uC for .3 min. All CF fluorescence

emission values were taken at 513 nm, normalized based upon FT,

and corrected to account for background emission arising from CF

in the LUV interior, any inherent vesicles ‘leakiness’ and inner

filter effects from vesicle scattering using an equivalent CF-loaded

LUV only blank sample (FB) as follows:

%Dye Leakage~
F{FB

FT{FB

|100 ð1Þ

For all experiments, FB was ,15% of FT.

Tryptophan fluorescence quenching
Quenching of intrinsic tryptophan fluorescence of b2m samples

in the presence of acrylamide was used to probe the interaction

between b2m monomers, fragmented or unfragmented fibrils and

lipid membranes at pH 4.5 and pH 7.4. For each acrylamide

concentration, two samples containing b2m (6 mM monomer

equivalent concentration) were prepared by dilution into Assay
Buffer from the original 120 mM stock; i) in the absence of LUVs

and ii) in the presence of LUVs (5 mM lipid molecule concentra-

tion) comprising 0, 12 or 50 mol % BMP plus the complex

zwitterionic lipid mixture. Following incubation at 37uC for

10 min, ultrapure acrylamide (01696, Sigma-Aldrich) was titrated

from an aqueous 5 M stock to give an acrylamide concentration

between 10 and 250 mM ([Q]). Tryptophan fluorescence was then

measured immediately.

The efficiency of quenching (F0/F), for each sample at [Q], was

calculated by dividing the tryptophan fluorescence intensity at

340 nm in the absence of quencher (F0) by the fluorescence

emission at 340 nm in the presence of the acrylamide quenching

agent (F). Linear regression was performed using the Stern–

Volmer equation for a dynamic process to determine the KSV for

each sample, as follows:

F0

F
~1zKSV Q½ � ð2Þ

DKSV was calculated by subtracting KSV obtained for b2m

monomers, fragmented or unfragmented fibrils in the absence of

LUVs from the corresponding KSV values obtained for LUV-

containing samples.

Preparation of fluorescently labeled b2m
To enable confocal imaging, b2m monomer was labeled with

the fluorescent dye tetramethylrhodamine (TMR) as follows. 5-

(and-6)-carboxytetramethylrhodamine, succinimidyl ester (C1171,

Molecular Probes) was freshly dissolved in DMSO at 1 mg/ml

and a ten-fold molar excess was added (dropwise whilst stirring) to

b2m monomer resuspended in 10 mM sodium bicarbonate, pH

9.4. The labeling reaction was allowed to proceed in the dark for

1 h at ambient temperature and was stopped by adding a five-fold

molar excess of Tris-HCl pH 8.0 over the concentration of the

dye. Unbound dye was separated from the b2m-TMR conjugate

using a PD10 desalting column (GE Healthcare, Little Chalfont,

UK) in 25 mM sodium phosphate buffer, pH 7.5. b2m was labeled

with 2, 3, 4 or 5 TMR molecules per monomer with a ratio of

,1:2:2:1 as determined by electrospray ionization mass spectrom-

etry (ESI-MS). The TMR-labeled b2m was concentrated to

0.7 mM, snap frozen in liquid nitrogen and stored at 280uC. For

confocal experiments, 10 mol % TMR-labeled b2m monomer was

mixed with 90 mol % unlabelled monomer and fibrils were

subsequently formed as described above.

Fluorescence confocal microscopy
Interactions between b2m and GUVs were visualized using

fluorescence confocal microscopy. DiD-labeled GUVs were

diluted five-fold in Assay Buffer (pH 6.5 or 7.4) and 100 ml of

the suspensions were supplemented with 10 mM CF in Assay
buffer pH 7.4 and mixed with either 1.0 ml of fibril growth buffer

(10 mM sodium dihydrogen phosphate, 50 mm NaCl, pH 2.0) for

control experiments, 1.0 ml of TMR-labeled b2m fragmented

fibrils (1.2 mM monomer equivalent) or 10 ml of TMR-b2m

monomers (11 mM). The monomers were assayed at a higher

concentration than fibrils to enable protein visualization under the

confocal microscope. Total lipid concentration was 3.3 mM. The

samples were incubated for 15 min on a glass-bottom culture dish

(MatTek Corp, P35G-1.5-20-C) at ambient temperature and

imaged on Zeiss LSM 700 confocal microscope using a Zeiss 63x/

1.4 N.A. DIC Plan Apochrom oil immersion lens. Culture dishes

were pre-treated with 10% (w/w) bovine serum albumin solution

(Sigma-Aldrich) to prevent adsorption of lipids to the glass. CF,

DiD and TMR probes were excited by lasers at 488 nm, 555 nm

and 639 nm, respectively.

Dynamic light scattering
Size distribution measurements of extruded vesicles were

performed using dynamic light scattering (DLS or Quasi-Elastic-

Light-Scattering - QELS) on a miniDAWN TREOS system,

equipped with a Wyatt QELS detector (Wyatt Technology), run in

batch mode at room temperature. Lipids were prepared and

extruded in Assay Buffer pH 7.4 before being subjected to the

same washing procedure used to remove CF from the vesicle

exterior, as described in Carboxyfluorescein dye release assays,
above. DLS was measured for LUVs resuspended at ,50 mM

lipid concentration in Assay Buffer at either pH 4.5 or 7.4. For

each sample, three measurements were performed, collecting

b2m Fibril Interactions
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QELS data at 5 s intervals for 3 min. Data were processed by

regularization analysis using Wyatt ASTRA 6.0 software. Hydro-

dynamic radii (Rh) obtained from DLS data are reported as the

weighted average of three experiments for each sample with an

error of 1 S.D.

Cryogenic transmission electron microscopy
Cryogenic transmission electron microscopy (cryo-EM) was

used to visualize extruded LUVs. The LUVs were fixed in vitreous

ice on Quantifoil R 3.5, 300 mesh, Cu grids using a Vitrobot mark

IV. Cryo-EM was carried out at liquid nitrogen temperatures

using a Gatan 626b cryo-holder and a FEI Tecnai-F20 electron

microscope. Images were recorded on a Gatan US4000 CCD

camera under low-dose conditions at a nominal magnification of

9600 x.

Results

Characterization of b2m fibrils
Unfragmented fibrils with a weight average length of

1.3060.05 mm (1 S.E., sample size = 242 fibrils) were formed

from recombinantly expressed b2m monomer by seeded fibril

elongation at pH 2.0 (Fig. 1B(i)). Fragmented b2m fibrils were

subsequently formed by vigorous agitation to decrease the weight

average length to 0.3060.01 mm (1 S.E., sample size = 763 fibrils)

(Fig. 1B(ii)).
The protein-to-lipid ratio typically utilized for the dye release

experiments described (6 mM monomer equivalent b2m: 5 mM

lipid molecule equivalent LUVs) is significantly higher than that

typically used to monitor membrane damage caused by membrane

active peptides, for which a peptide: lipid molar ratio in the region

of 1:10–1000 is typically utilized (see for example [52]). However

unlike typical membrane active peptides, b2m fibrils are large

multimeric aggregates. Assuming the b2m fibrils have an average

mass/unit length of 53 kDa/nm [53] and based on the fibril

length distributions measured herein (Fig. 1B), at a b2m monomer

equivalent concentration of 6 mM the molar fibril particle

concentration [40] for fragmented and unfragmented fibrils was

determined to be approximately 15.5 nM and 3.4 nM, respec-

tively. Hence the fibril particle: lipid molar ratio used herein

equates to ,1:300 for fragmented fibrils and ,1:1500 for

unfragmented fibrils. Assuming each LUV consists of approxi-

mately 1.46106 lipid molecules (400 nm unilamellar vesicles,

5 nm bilayer thickness, 0.7 nm2 head-group surface area) this

represents an absolute particle ratio of approximately 1000

unfragmented fibrils, 4000 fragmented fibrils or 26106 b2m

monomers for every LUV.

b2m fibril-induced dye release is modulated by
membrane composition and pH

To examine the effect of lipid charge and pH on b2m fibril-

induced membrane damage, dye release from LUVs comprised of

75 mol % POPC plus 25 mol % cholesterol (zwitterionic) and 75

mol % POPG plus 25 mol % cholesterol (anionic) was measured.

Upon addition of b2m monomers, fragmented or unfragmented

fibrils, CF dye release was monitored at pH 7.4, either after

continuous incubation at pH 7.4 (Fig. 2A and B) or in a

discontinuous manner after incubation at pH 4.5 and subsequent

immediate dilution to adjust the pH to 7.4 before measuring dye

release for individual samples at each time point (Fig. 2C and D,

see Materials and Methods). For all lipid mixtures and pH values

investigated, dye release resulting from the addition of monomers

is minimal (,10%), despite the high protein: lipid ratio used,

consistent with previous results [14]. Upon addition of b2m fibrils,

,10% dye release is observed from LUVs of the POPC lipid

mixture regardless of pH (Fig. 2A and C). Similarly, fibril-induced

dye release from LUVs of the POPG lipid mixture is minimal at

pH 7.4 (Fig. 2B). Considerable dye release is only observed upon

addition of fragmented fibrils (up to ,40% dye release) or

unfragmented fibrils (up to ,30% dye release) to POPG-

containing LUVs at pH 4.5 (Fig. 2D). Dye release is typically

observed to plateau approximately 10 min after addition of the

b2m fibrils and no further increase in dye release is observed after

2 h (Fig. S1). Accordingly, all subsequent dye release measure-

ments were taken 10 min after the addition of protein to the

LUVs. Although ,5% b2m monomer persists following fibril

maturation [54], previous experiments have shown that fibrils

formed as described herein lack oligomeric species (detectable by

size exclusion chromatography or recognized by the A11 antibody

[14]). Hence, it is unlikely that residual oligomers from the fibril

preparation are the culprits of the membrane disruption effects

observed. Instead, membrane disruption is caused by the presence

of b2m fibrils, either by direct interaction of the LUVs with the

fibrils themselves, or through species formed upon incubation of

the fibrils with the liposomes [14].

The data shown in Fig. 2 suggest that the extent of membrane

damage conferred by b2m fibrils is modulated by lipid charge and

pH. Hence, a systematic study of different, more physiologically

relevant, complex anionic lipid mixtures was performed over a

physiologically relevant pH range. The % dye release from LUVs

comprised of a complex zwitterionic lipid mixture, supplemented

with increasing concentrations of POPS, POPG, or BMP was

measured at pH 4.5–7.4 for b2m monomers, fragmented or

unfragmented fibrils as shown in Fig. 3A–C, respectively. The

complex lipid mixtures utilized here were designed to enable direct

comparison of the different anionic lipids, whilst also reflecting an

approximate global average of the zwitterionic lipid components

present in cellular membranes enriched in POPS (plasma

membrane), POPG (mitochondrial membranes) and BMP (endo-

cytic membranes) [27].

Minimal membrane damage (,10% dye release) is observed

upon the addition of b2m monomers to LUVs regardless of lipid

composition and pH (Fig. 3A, Table S3). Likewise, for both

fragmented and unfragmented fibrils, minimal dye release occurs

with the zwitterionic control lipid mixture (i.e. 0 mol % anionic

lipid, shown in black) or POPS-containing LUVs (shown in blue,

Fig. 3B and C). However, LUVs containing BMP (shown in red),

and to a lesser extent POPG-containing LUVs (shown in green),

are susceptible to membrane disruption by b2m fibrils (Fig. 3B and

C, Table S3).

The extent of dye release from POPG- and BMP-containing

LUVs increases significantly as the anionic lipid concentration is

increased from 12 mol % to 50 mol % (Fig. 3B and C, open and

closed symbols, respectively). For fragmented fibrils at pH 4.5 (see

Fig. 3B, bar graph), the greatest % dye release is observed for

LUVs containing BMP (4662% for 50 mol % BMP and 1965%

for 12 mol % BMP), whereas the % dye release observed for

POPG-containing membranes is typically lower than the equiv-

alent BMP-containing LUVs (2863% for 50 mol % POPG and

1363% for 12 mol % POPG). A similar trend in % dye release is

observed for unfragmented fibrils at pH 4.5 however, in this case,

the % dye release measured is typically lower than that observed

for fragmented fibrils (Fig. 3B, bar graph) (2265% for 50 mol %

BMP, 1262% for 12 mol % BMP, 2365% for 50 mol % POPG

and 1165% for 12 mol % POPG).

The extent of membrane disruption also varies as a function of

pH. For all lipid compositions studied dye release is minimal at pH

7.4 for both fragmented and unfragmented fibrils. Maximal dye

b2m Fibril Interactions
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release from POPG- and BMP-containing LUVs is observed for

b2m fibrils at pH 5.5–6.5, with the extent of dye release observed

at pH 4.5 typically being lower.

The extent of dye release from LUVs comprised of 12 mol %

BMP was measured at pH 4.5 for b2m concentrations ranging

from 0–60 mM monomer equivalent (Fig. 4A). For all samples the

extent of dye release observed does not increase substantially for

protein concentrations $6 mM. In addition at a constant 6 mM

monomer equivalent b2m concentration, the maximum % dye

release from LUVs comprised of 12 mol % BMP at pH 4.5 is not

altered by varying the concentration of lipids up to 15 mM for all

b2m species investigated (Fig. 4B).

The effect of cholesterol on b2m-induced dye release was also

measured (Fig. 4C). For LUVs comprised of 12 mol % BMP at pH

4.5, $10% dye release is only observed for fibrils at $15 mol %

cholesterol. As a consequence of our approach of varying the

anionic lipid concentration whilst maintaining the same molar

ratio of zwitterionic components described above, the total molar

concentration of cholesterol was varied in different samples (14–28

mol %, see Table S1). As shown in Fig. 4C, the presence of 15–30

mol % cholesterol does not alter the extent of dye release observed

when either b2m monomers or fibrils. Thus, the increase in dye

release observed when fibrils are incubated with LUVs containing

anionic lipids at acidic pH can be attributed to the presence of

BMP, rather than changes in the relative proportion of cholesterol

in each sample.

The presence of BMP can alter the size and morphology of

extruded LUVs and enable the spontaneously formation of small

(,100 nm) vesicles [55,56]. The size distribution and morphology

of extruded LUVs consisting of the POPC/cholesterol and

POPG/cholesterol (as employed in Fig. 2) and complex zwitter-

ionic lipid mixture with BMP and cholesterol (as employed in

Fig. 3 and 4) were analyzed (Fig. S2 and S3, respectively and

Table S4). All vesicles were prepared exactly as described for the

dye release experiments and extruded under the same conditions

(Materials and Methods). No gross differences in morphology were

observed by cryo-EM for the different lipid mixtures at either pH

4.5 or 7.4. An average Rh of ,200 nm was measured by DLS at

pH 4.5 or 7.4 for all lipid mixtures (Table S4), consistent with the

400 nm diameter of the pores of the extrusion membrane. The

inclusion of different amounts of cholesterol does not affect

extruded vesicle size (Rh = ,160 nm for LUVs containing 12 mol

% BMP and either 0 or 25 mol % cholesterol). However, a small

decrease in average vesicle Rh was observed with increasing BMP

concentration (,175 nm for 0 mol % BMP compared with

,125 nm for 50 mol % BMP, averaged across both pH values).

To determine whether this decrease in Rh could account for the

increase in dye release observed in BMP-containing vesicles, LUVs

consisting of the complex zwitterionic lipid mixture plus 12 mol %

BMP extruded at 100 nm were also analyzed by DLS and cryo-

EM (Fig. S4, Table S4). These LUVs are significantly smaller

(Rh = ,60 nm) than the 400 nm extruded vesicles. However,

Figure 2. Dye release upon addition of b2m to POPC/cholesterol or POPG/cholesterol LUVs. Dye release from LUVs (5 mM lipid)
comprising of (A) 75 mol % POPC: 25 mol % cholesterol and (B) 75 mol % POPG: 25 mol % cholesterol measured continuously over 20 min following
addition of 6 mM b2m samples in Buffer A at pH 7.4, 37uC. Error bars represent 1 standard deviation (S.D.) from three replicates for each b2m species.
Dye release from LUVs (5 mM lipid) comprising (C) 75 mol % POPC: 25 mol % cholesterol and (D) 75 mol % POPG: 25 mol % cholesterol measured
discontinuously over 20 min following addition of 6 mM b2m samples in Buffer B at pH 4.5, 37uC. Error bars represent 1 S.D. from three replicates for
each b2m species at each time point. b2m monomer (circle, blue), fragmented fibrils (square, red) and unfragmented fibrils (triangle, green).
doi:10.1371/journal.pone.0104492.g002
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unlike the BMP-containing LUVs where smaller vesicles (with

higher BMP concentration) result in greater dye release, a lower %

dye release is observed for the 100 nm extruded LUVs, compared

with the equivalent 400 nm LUVs at the same lipid concentration

(Fig. S5A). Therefore, vesicle size, and hence membrane

curvature, is not a defining factor in determining the efficiency

of fibril-induced membrane damage in this case.

The biophysical properties of the membrane are also defined by

the length and saturation of the acyl chain. Both acyl chains of the

18:1 form of BMP utilized here are unsaturated, whereas POPS

and POPG consist of one saturated and one unsaturated acyl

chain. Dye release was also measured for LUVs consisting of 36

POPC: 20 POPE: 7 SM: 25 cholesterol (mol/mol) doped with

either 12 mol % DOPS or DOPG. DOPS and DOPG possess the

same serine and glycerol headgroups as POPS and POPG,

respectively, but both lipid chains are unsaturated, as in BMP (Fig.

S5B and C). Like the equivalent POPS-containing lipid mixture

(Fig. 3), no substantial dye release was observed for the DOPS-

Figure 3. Dye release from LUVs comprised of complex anionic lipid mixtures upon addition of b2m samples at pH 4.5–7.4. Dye
release was measured 10 min after the addition of 6 mM (monomer equivalent concentration) of (A) b2m monomers, (B) fragmented fibrils or (C)
unfragmented fibrils added to CF-loaded LUVs (5 mM lipid) in Assay Buffer pH 4.5–7.4, 37uC. LUVs are comprised of 36 POPC: 20 POPE: 7 SM: 25
cholesterol (mol/mol) doped with 0 mol % (diamond, black), 12 mol % (open symbols) or 50 mol % (solid symbols) anionic lipid, POPS (circle, blue),
POPG (diamond, green) or BMP (square, red). Corresponding bar graph of dye release at pH 4.5 in 0 mol % (black), 12 mol % (open bar) or 50 mol %
(solid bar) POPG, POPS or BMP are shown alongside. Error bars represent 1 standard error (S.E.) from three independent repeats, each of three
replicates.
doi:10.1371/journal.pone.0104492.g003
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containing LUVs in the presence of fragmented fibrils. Compa-

rable % dye release was observed for vesicles comprising the

POPG (Fig. 3) and DOPG lipid mixtures.

Dye release is not simply related to the extent of
b2m-membrane interaction

To investigate membrane association of b2m monomers,

fragmented and unfragmented fibrils, quenching of intrinsic

tryptophan fluorescence by acrylamide was utilized. Acrylamide

does not readily partition into lipid bilayers. Thus, the Stern-

Volmer quenching constant (KSV) is a reliable reflection of the

biomolecular rate constant for dynamic quenching of tryptophan

residues accessible to the aqueous phase, where a greater KSV is

observed for more solvent exposed tryptophan residues [57].

Hence, a difference between the KSV values observed for b2m

samples in the absence or presence of LUVs is indicative of a

change in local environment of Trp-60 and/or Trp-95 in each

sample, presumably reflective of an interaction between b2m

monomers/fibrils and the lipid bilayer. Linear regression of Stern-

Figure 4. Dye release from LUVs comprised of 12 mol % BMP at
pH 4.5, varying b2m: lipid concentration ratio and cholesterol
content. (A) Dye release measured for LUVs (5 mM lipid) at different
monomer equivalent concentrations of b2m. (B) Dye release measured
for varying lipid equivalent concentrations of LUVs at 6 mM monomer
equivalent concentration of b2m. (C) Dye release from LUVs (5 mM lipid)
comprising 36 POPC: 20 POPE: 7 SM (mol/mol), 12 mol % BMP plus
varying concentrations of cholesterol at 6 mM monomer equivalent
concentration of b2m. Dye release was measured 10 min after addition

b2m monomer (circle, blue), fragmented fibrils (square, red) and
unfragmented fibrils (triangle, green) in Assay Buffer pH 4.5, 37uC. Error
bars represent 1 S.D. from three replicates. Open symbols corresponds
to dye release measured for 6 mM monomer equivalent b2m samples
with 5 mM lipid equivalent concentration of LUVs containing 25 mol %
cholesterol, as in Fig. 3.
doi:10.1371/journal.pone.0104492.g004

Figure 5. Change in tryptophan fluorescence quenching for
b2m in the presence of LUVs. DKSV for 6 mM monomer equivalent
concentration b2m monomer, fragmented or unfragmented fibrils
10 min after addition of LUVs (5 mM lipid) at 37uC in (A) Assay buffer at
pH 7.4 or (B) Assay buffer at pH 4.5. Lipid mixes comprise 36 POPC: 20
POPE: 7 SM: 25 cholesterol (mol/mol) doped with 0 mol % (blue), 12 mol
% (red) or 50 mol % (green) BMP. Error bars represent 1 S.E. from linear
regression.
doi:10.1371/journal.pone.0104492.g005
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Volmer plots (Fig. S6 and Table S5,) was performed to determine

the change in tryptophan quenching (DKSV) between b2m in

solution and upon addition of LUVs comprising of 0, 12 or 50 mol

% BMP at pH 7.4 or 4.5 (Fig. 5A and B, respectively).

Only a small decrease in KSV (DKSV = ,20.5 M21) is observed

for b2m monomers, fragmented or unfragmented fibrils in the

presence of the membrane at pH 7.4, regardless of lipid

composition. However, at pH 4.5 a larger decrease in KSV

(DKSV = ,21.7 M21) is observed for both fragmented and

unfragmented b2m fibrils in the presence of BMP-containing

LUVs; conditions for which significant dye release was also

observed. However, by contrast with the results of the dye release

experiments, no correlation between DKSV and either fibril length

or BMP concentration is observed.

Visualizing b2m fibril-membrane interactions by confocal
microscopy

To enable direct visualization of b2m-lipid interactions, DiD-

labeled GUVs 10–25 mm in diameter were formed from 100 mol

% DOPC (zwitterionic) or 80 mol % DOPC plus 20 mol % BMP

(anionic) lipid compositions by electroformation (Fig. S7A). These

GUVs were visualized in the presence of TMR-labeled b2m

monomers or fragmented fibrils via confocal microscopy in Assay
Buffer at pH 7.4 and 6.5. Note that GUVs were not able to be

prepared at lower pH values or higher concentrations of BMP

(Materials and Methods). Images were collected in a lower focal

plane, which contained mainly dense, intact, sucrose-loaded

GUVs, and an upper focal plane, which contained mainly non-

vesicular lipid (Fig. 6A).

Upon addition of b2m monomers, no co-localization of b2m

with DOPC GUVs or DOPC/BMP GUVs is observed at either

pH (Fig. S7B–C). CF and b2m monomers are also excluded from

the interior of the GUVs suggesting that membrane damage does

not occur upon addition of monomer. Intensity profiles of TMR

fluorescence also show that b2m monomers do not accumulate on

the lipid surface (Fig S7B–C).

Upon addition of fragmented b2m fibrils to DOPC GUVs at pH

7.4, no co-localization of fibrils and lipids is observed (Fig. 6B(i)).
However, for DOPC vesicles at pH 6.5 (Fig. 6C(i)) and BMP-

containing GUVs at both pH 7.4 and 6.5 (Fig. 6B(ii) and C(ii)),
small lipid assemblies (,,2 mm in size), presumably arising from

disruption of GUVs, are observed on the fibril surfaces when

viewed in the upper focal plane (white arrows). In the lower focal

plane, intact GUVs (in which CF is excluded from the vesicle

interior) are also observed for both the DOPC- and BMP-

containing lipid mixtures regardless of pH (Fig. 6B and C),

indicating the presence of intact GUVs even under conditions in

which some membrane damage is present. The co-localization of

fibrils with smaller lipid structures suggests that the interaction

between b2m fibrils and GUVs causes disruption of the GUV

structure, consistent with dye release observed for BMP-containing

LUVs under similar conditions. However, it is unclear whether

this fibril-lipid association arises secondary to, or during,

disruption of the vesicle structure. Intriguingly, GUVs in which

CF has partially leaked into the vesicle are absent in the

microscopy experiments (Fig. 6). This suggests that b2m fibril-

induced membrane damage results in complete disruption of the

membrane architecture, rather than the formation of (meta)stable

pores or defects in the lipid bilayer.

The presence of intact GUVs under conditions in which

membrane damage has occurred indicates that not all GUVs are

susceptible to membrane damage. Indeed, b2m fibril-induced dye

release from LUVs is also observed to plateau at a maximum of

,100 % (Fig. 2) and does not significantly increase after .2 h

(Fig. S1). Additionally, the maximum % dye release is not

significantly altered by increasing the b2m fibril concentration 10-

fold or by altering the concentration of LUVs (Fig. 4A and B). The

inability to induce complete dye release at infinite time despite a

significant excess of protein, is a perplexing facet of the

membrane-damaging mechanism of other aggregated samples

(see for example [13,58]). The mode of membrane damage is likely

to be complex due to an equilibrium of membrane bound fibrils

and those in the bulk aqueous phase. Fibrils coalesce during

incubation (as shown by confocal microscopy in Fig. 6B and C),

resulting in a reduction in exposed fibril surface area. Similarly,

upon membrane damage fibrils become coated with lipid (also

shown in Fig. 6 B(ii) and C(ii and iii)) which may then reduce or

eliminate their ability to induce membrane damage. However, a

detailed mechanism of b2m fibril-induced membrane damage has

not yet been fully elucidated.

Discussion

b2m fibril-induced membrane disruption is enhanced by
the presence of anionic lipids at acidic pH

The interaction between amyloid fibrils and cellular membranes

is thought to be an important facet of several amyloid diseases

[16,18]. Using dye release experiments we have previously shown

that b2m fibrils cause damage to anionic lipid membranes [14].

However, the effect of lipid composition and the chemical

environment in which b2m fibril-lipid interactions occur have

not been investigated previously.

Here, dye release is observed upon the addition of b2m fibrils to

synthetic 75 mol % POPG, 25 mol % cholesterol (anionic) LUVs

at pH 4.5. However, for 75 mol % POPC, 25 mol % cholesterol

(zwitterionic) LUVs no dye release is observed for any b2m species

at either pH 7.4 or 4.5 (Fig. 2A and C). Hence, it would appear

that the presence of negatively charged lipids is required to render

the membrane susceptible to b2m fibril-induced damage. Using

more complex lipid mixtures containing the anionic lipids POPS,

POPG or BMP, we demonstrate that the extent of b2m fibril-

induced membrane damage is dependent on the identity of the

anionic lipid and the pH at which the fibril-lipid interactions

occur. Strikingly, fragmented b2m fibrils, high BMP concentra-

tion, and low pH result in enhanced susceptibility to membrane

damage.

In principle, dye release requires that b2m interacts directly with

the lipid bilayer to give rise a defect in membrane integrity.

However, no direct correlation between DKSV and BMP

concentration and fibril length is observed at pH 4.5 (Fig. 5B).

Normalization of the % dye release per DKSV allows an

approximate relative efficiency of membrane damage for samples

of different type (monomer, fragmented and unfragmented fibrils)

to be determined (Fig. 7). At pH 4.5, fragmented b2m fibrils give

rise to an ,2-fold greater increase in % dye release per DKSV than

the equivalent unfragmented b2m fibrils for LUVs containing

BMP. Additionally, for LUVs comprised of 50 mol % BMP, ,2-

fold more dye release per fibril-lipid interaction is observed for

both fibrils types compared with LUVs comprising of only 12 mol

% BMP. Increased fibril-induced membrane damage is unlikely to

arise solely from a greater proportion of b2m fibrils interacting

with the lipid bilayer at higher BMP concentrations. Thus, the

difference in membrane damage efficiency observed for different

lipid vesicle compositions, and fragmented versus unfragmented

fibrils, either relates to a difference in susceptibility of particular

membrane compositions to fibril-induced membrane damage,

and/or a second activation step that requires specific fibril-lipid

interactions.
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Figure 6. Confocal fluorescence microscopy of GUVs upon addition of fragmented b2m fibrils. (A) Confocal images were collected in two
different focal planes. The upper plane contains mainly non-vesicular lipid while dense, intact sucrose-loaded GUVs are observed mostly in the lower
focal plane. Confocal images of TMR-labeled b2m fragmented fibrils incubated with DiD-labeled GUVs for 15 min at ambient temperature in (B) Assay
Buffer at pH 7.4 or (C) Assay Buffer at pH 6.5. (L-R) TMR-labeled b2m fibrils (red), DiD-labeled GUVs (green), superimposition of the TMR and DiD
channels. Soluble CF added to the vesicle exterior is shown in blue (lower focal plane only). Representative images when viewed in the upper focal
plane and lower focal plane are shown for GUVs comprised of (i) 100 mol % DOPC or (ii) 80 mol % DOPC plus 20 mol % BMP. White arrows highlight
areas of lipids bound to fibril aggregates. Scale bar 10 mm.
doi:10.1371/journal.pone.0104492.g006
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The interaction between areas of positive charge localized on

the b2m fibril surface/ends and negatively charge lipids may

provide a rationale for the higher efficiency of membrane

disruption observed at acidic pH for the POPG- and BMP-

containing lipid mixtures compared with POPS-containing and

zwitterionic lipid mixtures (Fig. 3B–C). The theoretical pI of b2m

is 6.01 (Protparam, [59]). However, in a large fibril aggregate it is

likely that significant charge-screening occurs within the protein

core resulting in an altered pI and/or localized areas of surface

charge. Although, the distribution of charge on the surface of the

b2m fibrils is not currently known since an atomic resolution

structure of these particles has not yet been determined, exposed

areas of charge are more likely to be protonated at lower pH

values. The presence of negatively charged groups on the lipid

bilayer also attracts positively charged counterions, lowering the

pH in the vicinity of the membrane interface compared with the

bulk solution [60,61] which may also facilitate protonation of the

fibril surface. At pH 4.5 the serine head groups will be also

protonated [62], whilst POPG and its structural isomer BMP are

expected to remain negatively charged. Hence, the absence of dye

release from POPS-containing and zwitterionic LUVs, and

increase in b2m fibril-induced membrane damage typically

observed for LUVs comprised of a greater proportion of POPG

or BMP (Fig. 3B–C, also see Table S3), suggests that the

interaction between positive charge on the b2m fibrils and the

negative charge localized on the phospholipid backbone of POPG

and BMP (Fig. 1A) results in membrane damage.

Although electrostatic interactions are likely to be important in

the mechanism of b2m fibril-induced membrane damage, no

simple relationship between the charge on the lipid head-group

and the extent of fibril-induced membrane damage is observed.

However, the pH of the solution also determines interfacial tension

of the lipid vesicle, which in turn determines bilayer rigidity and,

as a result, affects membrane stability [63]. Hence, the balance

between b2m fibril and lipid electrostatic interactions is also likely

to depend on the overall dynamics and structural properties of the

membrane.

The structure of BMP is unusual from two perspectives; i) it is a

phospholipid with two glycerol groups each with a single acyl

chain, which results in a cone like shape in the lipid bilayer and ii)

it possesses a unique sn-1 glycerophosphate backbone (typically

associated with archeal glycerophospholipids), not the usual sn-3
stereochemistry of mammalian lipids [64]. Although BMP has

been shown to mix with other phospholipids as a lipid, and not to

act as a detergent as once speculated [56,65], incorporation of

BMP into zwitterionic lipid bilayers has been shown to induce less

disorder in the liquid-crystalline phase, compared with the

inclusion of equimolar concentrations of DOPG [65]. Altered

disorder in BMP-containing membranes may account for the

greater dye release observed upon interaction between b2m fibrils

and BMP-containing liposomes when compared with POPG-

containing LUVs. Additionally, due to the absence of a lipid

‘head-group’, BMP displays significant alkyl segments at the

surface of the bilayer [56] which may decrease steric hindrance of

the charged phospholipid backbone and/or form an additional

binding platform for b2m fibril-lipid interactions.

Acyl chain length and saturation are key determinants of the

dynamics and structural order of a lipid bilayer. However, it is

difficult to disentangle the effect of acyl chain length/saturation

and headgroup on the biophysical properties of BMP containing

membranes compared with POPS- and POPG-containing LUVs

due to the fundamental differences between the unusual structure

of BMP and typical phosphatidyl lipid structures; whereby both

lipid chains of BMP are directly attached to the phosphate

backbone via individual glycerol moieties, rather than both chains

arising from a single glycerol group as in phosphatidyl lipids (see

Fig. 1A). The 18:1 variant of BMP is typically the most common

form of BMP found in vivo (although its contribution is lower in

some cell types), with 18:1 BMP comprising ,57% of the total

BMP isolated from human liver (see for example [66–69]). Hence,

the 18:1 form of BMP, its isomer 18:1 POPG and equivalent 18:1

POPS were utilized herein. Although both acyl chains of 18:1

BMP are unsaturated, and 18:1 POPS and POPG consist of one

saturated and one unsaturated chain. However, no substantial

difference in the efficiency of dye release was observed for POPS-

containing LUVs compared with DOPS-containing vesicles (Fig.

S5B). Similarly, LUVs containing DOPG lipids give rise to similar

(possibly slightly lower) extents of dye release than their POPG-

containing counterparts (Fig. S5C). Hence, chain saturation effects

do not appear to dominate the efficiency of dye release observed in

BMP-containing vesicles.

Cholesterol has also been shown to influence membrane

dynamics [70]. The general view is that cholesterol causes an

increase in bilayer rigidity by reducing the number of trans-gauche

isomerizations accessible to the acyl chains of the surrounding lipid

molecules. However, it has also been shown that the of effect

cholesterol on membrane structure depends on the lipid chain

content, saturation and length [71], and the presence of

cholesterol also induces negative spontaneous curvature [72] and

so can contribute to the generation of negative membrane

curvature stress thought to mediate membrane fusion events

[73,74] and the formation of toroidal lipid pores [75]. There is

mounting evidence that the presence of cholesterol can also

modulate membrane damage and cytotoxicity caused by amyloid

proteins (see for example [76–79]). Incorporation of 25 mol %

cholesterol into DOPS and DOPG LUVs has been shown

previously to decrease membrane damage induced by fibrillar a-

synuclein [13]. However, for fragmented b2m fibrils we observe

approximately 4-fold more dye release from LUVs containing

.15 mol % cholesterol compared with LUVs containing less

cholesterol (Fig 4C). Hence, membrane damage caused by

Figure 7. Dye release normalized to the change in tryptophan
fluorescence quenching measured for b2m with BMP-contain-
ing LUVs at pH 4.5. The ratio of % dye release per membrane
interaction detected via a change in tryptophan quenching observed in
the absence or presence of lipid. b2m monomers, fragmented and
unfragmented fibrils (6 mM monomer equivalent concentration) were
incubated in Assay Buffer pH 4.5 with LUVs (5 mM lipid) comprising 36
POPC: 20 POPE: 7 SM: 25 cholesterol (mol/mol) plus 0 mol % (blue), 12
mol % (red) or 50 mol % (green) BMP for 10 min at 37uC. Error bar
represent 1 S.E.
doi:10.1371/journal.pone.0104492.g007
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different amyloid proteins may not follow a simple trend, but

involve specific interactions between each amyloid species and the

lipid bilayer.

Biological implications of the interaction between b2m
fibrils and cellular membranes

Biological membranes enable regulation of the specific bio-

chemical environments essential for cellular physiology [27]. BMP

is virtually exclusive to the membranes of vesicles in the endocytic

pathway. High concentrations of BMP are found in the

membranes of late endosomes; wherein the concentration of

BMP is approximately 15 mol %, but the inner membrane leaflet

of late endosomes can comprise of as much as 70 mol % BMP

[43,44,80]. Endosomal maturation is also associated with

increased acidification of the vesicle interior resulting in a pH

gradient across the membrane [81]. An analogous (but inversed)

pH gradient is created using the dye release assay described here,

with neutral pH in the vesicle interior and acidic pH (4.5–6.5) on

the vesicle exterior. Thus, as endocytosed b2m fibrils are trafficked

through the endocytic pathway to lysosomes [46], they are likely to

encounter BMP-containing membranes under acidic conditions,

comparable to the conditions shown to give rise to maximal dye

release in vitro herein.

Although no direct evidence of gross disruption of endosomal

vesicles or lysosomes upon interaction with b2m fibrils has been

reported, other studies have shown that amyloid sequences can

increase the permeability of lysosomal membranes and point to an

increase in lysosomal membrane potential as a feature of several

amyloid disorders, including Alzheimer’s and Parkinson’s disease

[82–89]. The unusual structure and stereochemistry of BMP are

thought to be responsible for important roles in endosomes

including: structural integrity; endosome maturation; and protein,

lipid and cholesterol sorting and trafficking [43,80,90,91]. BMP is

essential for invagination of the limiting membrane in endosomes,

in which the physical properties of BMP may help stabilize the

resultant small intraluminal vesicles [55,56]. Disruption of this

process or promotion of small vesicle formation may constitute a

mechanism of fibril induced cellular damage. However, the

mechanism of b2m fibril-induced membrane disruption and how

this manifests in vivo remain unclear.

The results of this study provide a biophysical rationale for the

possible involvement of BMP-containing vesicles of endosomal

origin in the cellular mechanism of b2m cytotoxicity and resulting

DRA pathology. Further investigation of the interaction between

amyloid fibrils formed from different protein sequences and

anionic lipid species associated with different intracellular mem-

branes is warranted and may help elucidate the diverse pathologies

associated with DRA and other amyloid diseases.

Supporting Information

Figure S1 Dye leakage following addition of b2m to
POPC/cholesterol or POPG/cholesterol LUVs. Dye

release from LUVs consisting of (A) 75 mol % POPC: 25 mol %

cholesterol or (B) 75 mol % POPG: 25 mol % cholesterol at

pH 7.4, 37uC. Dye release from LUVs consisting of (C) 75 mol %

POPC: 25 mol % cholesterol and (C) 75 mol % POPG: 25 mol %

cholesterol at pH 4.5, 37uC. Dye release was measured 20 min

(solid bar), or $2 h (open bar) after the addition of b2m monomer,

fragmented or unfragmented fibrils. Error bars represent 1 S.D. of

the mean from three replicates.

(TIF)

Figure S2 DLS and cryo-EM characterization of LUVs
comprised of POPC/cholesterol or POPG/cholesterol

extruded at 400 nm. All vesicles were extruded using a 400 nm

membrane and washed in Assay Buffer at pH 7.4. For each lipid

mixture, the DLS size distribution (left) and representative cryo-

EM images are shown for vesicles resuspended in Assay Buffer at

pH 4.5 or pH 7.4 (right). The DLS traces represent a histogram fit

using the regularization method for a single run (pH 4.5, red solid
line; pH 7.4, blue dashed line). Typically, three measurements

were made from each sample. (A) LUVs comprised of 75 mol %

POPC: 25 mol % cholesterol and (B) LUVs comprised of 75 mol

% POPG: 25 mol % cholesterol. Scale bar 250 nm.

(TIF)

Figure S3 DLS and cryo-EM characterization of LUVs
containing BMP extruded at 400 nm. All vesicles were

extruded using a 400 nm membrane and washed in Assay Buffer
at pH 7.4. For each lipid mixture, the DLS size distribution and

representative cryo-EM images are shown for vesicles resuspended

in Assay Buffer at pH 4.5 and pH 7.4. The DLS traces represent a

histogram fit using the regularization method for a single run

(pH 4.5, red solid line; pH 7.4, blue dashed line). Typically, three

measurements were made from each sample. LUVs comprising of

36 POPC: 20 POPE: 7 SM: 25 cholesterol (mol/mol) (A) minus

BMP, (B) plus 12 mol % BMP and (C) plus 50 mol %BMP. (D)

LUVs comprised of 36 POPC: 20 POPE: 7 SM and 12 mol %

BMP without cholesterol (i.e. the same lipid mixture as in (B)

minus cholesterol). Scale bar 250 nm.

(TIF)

Figure S4 DLS and cryo-EM characterization of LUVs
containing 12 mol % BMP extruded at 100 nm. Vesicles

were extruded using a 100 nm membrane and washed in Assay
Buffer at pH 7.4. The DLS size distribution and representative

cryo-EM images are shown for LUVs comprised of 36 POPC: 20

POPE: 7 SM: 25 cholesterol (mol/mol) plus 12 mol % BMP (i.e.

the same lipid mixture as in Fig. S3B) resuspended in Assay Buffer
at pH 4.5 or pH 7.4 (right). The DLS traces represent a histogram

fit using the regularization method for a single run (pH 4.5, red
solid line; pH 7.4, blue dashed line). Typically, three measure-

ments were made from each sample. Scale bar 250 nm.

(TIF)

Figure S5 Comparison of % dye release in the presence
of fragmented fibrils for LUVs extruded at different
sizes or containing lipids with the same head group but
differently saturated acyl chains. A) LUVs doped with 12

mol % BMP extruded at either 400 nm (data corresponding to

Fig. 3, solid bars) or 100 nm (open bars). B) LUVs doped with

either 12 mol % POPS (data corresponding to Fig. 3, solid bars) or

12 mol % DOPS (open bars). C) LUVs doped with either 12 mol %

POPG (data corresponding to Fig. 3, solid bars) or 12 mol %

DOPG (open bars). The remaining lipid for all LUVs comprised of

36 POPC: 20 POPE: 7 SM: 25 cholesterol (mol/mol). Dye release

was measured 10 min after the addition of 6 mM monomer

equivalent concentration of b2m fragmented fibrils to 5 mM lipid

equivalent concentration of CF-loaded LUVs in Assay Buffer
pH 4.5–7.4, 37uC. Error bars represent 1 S.E. from three

independent repeats, each of three replicates (from Fig. 3) and 1

S.D. of the mean for three replicates for the other data shown here.

(TIF)

Figure S6 Stern-Volmer plots of Trp fluorescence
quenching of b2m monomers, fragmented and unfrag-
mented fibrils in the absence of LUVs 10 min after the
addition of LUVs comprising 0, 12 or 50 mol % BMP as
in Fig. 5. (A) pH 4.5 and (B) pH 7.4. b2m monomer (blue),

fragmented (red) and unfragmented (green) fibrils in the absence
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(closed symbols, solid line) or presence of LUVs (open symbols,
dashed line).

(TIF)

Figure S7 Confocal microscopy of GUVs and b2m
monomers. (A) Confocal images of 80 mol % DOPC plus 20

mol % BMP GUVs in Assay Buffer at pH 7.4 in the absence of b2m

protein. The control image is representative of all GUV compositions

under the conditions tested. Confocal images of TMR-labeled b2m

monomer incubated with DiD-labeled GUVs for 15 min at ambient

temperature in (B) Assay Buffer at pH 7.4 or (C) Assay Buffer at

pH 6.5. (L-R) TMR fluorescence (red), DiD-labeled GUVs (green),

phase-contrast image soluble carboxyfluorescein added to vesicle

exterior (blue) and intensity profile of TMR florescence across selected

GUVs (yellow line, B and C only). Representative images for GUVs

comprising (i) 100 mol % DOPC or (ii) 80 mol % DOPC plus 20 mol

% BMP are shown for both pH values. Scale bar 10 mm.

(TIF)

Table S1 Lipid composition in total mol % for the
complex lipid mixes used to form LUVs herein i.e. 0, 12
or 50 mol % anionic lipid component with the remaining
lipid made up of zwitterionic components in a mol/mol
ratio of 36 POPC: 20 POPE: 7 SM: 25 cholesterol.
(DOC)

Table S2 Concentration of citric acid and sodium
phosphate components in Assay Buffer prepared at
pH 4.5–7.4. Assay Buffer consists of a total of a 50 mM mixture

of citric acid and sodium phosphate plus 107 mM NaCl and

1 mM EDTA. This buffer enables buffering across a wide,

physiologically relevant, pH range (4.5–7.4), whilst is also iso-

osmotically balanced to the 50 mM sodium phosphate pH 7.4,

10 mM NaCl, 1 mM EDTA plus 50 mM CF on the LUV interior

used for dye release experiments.

(DOC)

Table S3 Percentage dye release corresponding to the
data shown in Fig. 3. LUVs comprised of 36 POPC: 20 POPE:

7 SM: 25 cholesterol (mol/mol) doped with 0, 12 or 50 mol %

anionic lipid, POPS, POPG or BMP. Dye release was measured

10 min after the addition of 6 mM monomer equivalent concen-

tration of b2m (A) monomers, (B) fragmented fibrils or (C)

unfragmented fibrils to 5 mM equivalent lipid concentration of CF-

loaded LUVs in Assay Buffer pH 4.5–7.4, 37uC. Different fonts

represent the statistical significance of different experiments

relative to that data obtained in 0 mol % anionic lipid1–2.

(DOC)

Table S4 Hydrodynamic radii obtained by DLS for
LUVs shown in Fig. S2–S4.

(DOC)

Table S5 KSV values (M21) determined for quenching of
Trp fluorescence for b2m monomers, fragmented and
unfragmented fibrils in solution and 10 min after
addition of LUVs comprised of 0, 12 or 50 mol %
BMP, as in Fig. 5 and Fig. S6.

(DOC)
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