539 research outputs found

    E´ chelle diagrams and period spacings of g modes in: Doradus stars from four years of Kepler observations

    Get PDF
    We use photometry from the Kepler Mission to study oscillations in Doradus stars. Some stars show remarkably clear sequences of g modes and we use period ´echelle diagrams to measure period spacings and identifyrotationally split multiplets with ` = 1 and ` = 2.We find small deviations from regular period spacings that arise from the gradient in the chemical composition just outside the convective core. We also find stars for which the period spacing shows a strong linear trend as a function of period, consistent with relatively rapid rotation. Overall, th

    Commission 10: Solar Activity

    Get PDF
    Commission 10 aims at the study of various forms of solar activity, including networks, plages, pores, spots, fibrils, surges, jets, filaments/prominences, coronal loops, flares, coronal mass ejections (CMEs), solar cycle, microflares, nanoflares, coronal heating etc., which are all manifestation of the interplay of magnetic fields and solar plasma. Increasingly important is the study of solar activities as sources of various disturbances in the interplanetary space and near-Earth “space weather”. Over the past three years a major component of research on the active Sun has involved data from the RHESSI spacecraft. This review starts with an update on current and planned solar observations from spacecraft. The discussion of solar flares gives emphasis to new results from RHESSI, along with updates on other aspects of flares. Recent progress on two theoretical concepts, magnetic reconnection and magnetic helicity is then summarized, followed by discussions of coronal loops and heating, the magnetic carpet and filaments. The final topic discussed is coronal mass ejections and space weather. The discussions on each topic is relatively brief, and intended as an outline to put the extensive list of references in context. The review was prepared jointly by the members of the Organizing Committee, and the names of the primary contributors to the various sections are indicated in parentheses

    Metal-Rich SX Phe Stars in theKeplerField

    Get PDF
    High-resolution spectroscopic observations have been made for 32 of the 34 candidate SX Phe stars identified in the Kepler field by Balona & Nemec (2012). All available long- and short-cadence Q0-Q17 Kepler photometry has been analyzed for the 34 candidates. Radial velocities (RVs), space motions (U, V, W), projected rotation veloc- ities (v sin i), spectral types, and atmospheric characteristics (Teff , log g, [M/H], vmic, etc.) were derived from ∼160 spectra taken with the ESPaDOnS spectrograph on the Canada- France-Hawaii 3.6-m telescope and with the ARCES spectrograph on the Apache Point Observatory 3.5-m telescope. Two thirds of the stars are fast rotators with v sin i > 50 km/s, including four stars with v sin i > 200 km/s. Three of the stars have (negative) RVs > 250 km/s and retrograde space motions, and seven stars have total space motions > 400 km/s. All the spectroscopically measured SX Phe candidates have positions in a Toomre diagram that are consistent with being bona fide halo and thick-disk stars. Although several stars show a marked metal weakness, the mean [Fe/H] of the sample is near 0.0 dex (σ ∼ 0.25 dex), which is considerably more metal-rich than is normally expected for a sample of Pop. II stars. Observed pulsation frequency modulations and optical time delays suggest that at least eight of the SX Phe stars are in binary systems, some of which show signif- icant RV variations. Six of the time-delay binaries have secondary masses ranging from 0.05 to 0.70 Mo and orbital periods in the range 9 to 1570 days. Another star appears to be an ellipsoidal variable with a 2.3-day orbital period; and two other systems have orbital periods longer than the ∼4-year sampling interval of the Kepler data

    Finding non-eclipsing binaries through pulsational phase modulation

    Get PDF
    We present a method for finding binaries among pulsating stars that were observed by the Kepler Mission. We use entire four-year light curves to accurately mea- sure the frequencies of the strongest pulsation modes, then track the pulsation phases at those frequencies in 10-d segments. This produces a series of time-delay measurements in which binarity is apparent as a periodic modulation whose amplitude gives the projected light travel time across the orbit. Fourier analysis of this time-delay curve provides the pa- rameters of the orbit, including the period, eccentricity, angle of ascending node and time of periastron passage. Differentiating the time-delay curve yields the full radial-velocity curve directly from the Kepler photometry, without the need for spectroscopy. We show examples with delta Scuti stars having large numbers of pulsation modes, including one system in which both components of the binary are pulsating. The method is straightfor- ward to automate, thus radial velocity curves can be derived for hundreds of non-eclipsing binary stars from Kepler photometry alone. This contribution is based largely upon the work by Murphy et al. [1], describing the phase-modulation method in detail

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS

    Get PDF
    Introduction: Rifampicin (RIF) and clarithromycin (CLR) are common drugs for the treatment of infections like Mycobacterium tuberculosis and Mycobacterium ulcerans. Treatment for these diseases are long-term and the individual pharmacokinetic variation, drug-drug interactions or non-adherence may introduce sub-therapeutic exposure or toxicity. The application of therapeutic drug monitoring (TDM) can be used to ensure efficacy and avoid toxicity. With the use of dried blood spot (DBS), TDM may be feasible in rural areas. During DBS method development, unexpected interactions or matrix effects may be encountered due to endogenous components in the blood. Another complication compared to plasma analysis is that RIF can form chelate complexes with ferric ions or can bind with hemes, which are potentially present in the extracts of dried blood spots. Methods: The investigation focused on the interaction between RIF and the endogenous components of the DBS. The use of ethylenediaminetetraacetic acid (EDTA) and deferoxamine (DFX) as chelator agents to improve recoveries and matrix effects were investigated. A rapid analytical method was developed and validated to quantify RIF and CLR and their active metabolites desacetyl rifampicin (DAc-RIF) and 14-hydroxyclatythromcin (14OH-CLR) in DOS samples. A clinical application study was performed in tuberculosis patients by comparing DBS concentrations with plasma concentrations. Results: The interaction between RIF and the DBS matrix was avoided using the complexing agents EDTA and DFX, which improved recoveries and matrix effects. The developed sample procedure resulted in a simple and fast method for the simultaneous quantification of RIF, CLR and their metabolites in DOS samples. High stability was observed as all four substances were stable at ambient temperature for 2 months. Deming regression analysis of the clinical application study showed no significant differences for RIF, DAc-RIF, CLR and 14OH-CLR between patient plasma and DBS analysis. The slopes of the correlation lines between DBS and plasma concentrations of RIF, DAc-RIF, CLR and 14OH-CLR were 0.90, 0.99, 0.80 and 1.09 respectively. High correlations between plasma and DBS concentrations were observed for RIF (R-2=0.9076), CLR (R-2=0.9752) and 14OH-CLR (R-2=0.9421). Lower correlation was found for DAc-RIF (R-2 of 0.6856). Conclusion: The validated method is applicable for TDM of RIF, CLR and their active metabolites. The stability of the DBS at high temperatures can facilitate the TDM and pharmacokinetic studies of RIF and CLR even in resource limited areas. The role of EDTA and DFX as complexing agents in the extraction was well investigated and may provide a solution for potential applications to other DBS analytical methods. (C) 2013 Elsevier B.V. All rights reserved

    Temporal evolution of solar energetic particle spectra

    Get PDF
    During solar flares and coronal mass ejections, solar energetic par- ticles (SEPs) may be released into the interplanetary medium and near-Earth locations. The energy spectra of SEP events at 1 AU are typically averaged over the entire event or studied in a few snapshots. In this paper we analyze the time evolution of the energy spectra of four large selected SEP events using a large number of snapshots. We use a multi-spacecraft and multi-instrument approach for the observations, obtained over a wide SEP energy range. We find large differences in the spectra at the beginning of the events as measured by different instruments. We show that over time, a wave-like structure is observed traveling through the spectra from the highest energies to the lowest energies, creating an “arch” shape which then straightens into a power law later in the event, after times of the order of 10 hours. We discuss the processes that determine SEP intensities and their role in shaping the spectral time evolution

    Limited-sampling strategies for anidulafungin in critically ill patients

    Get PDF
    Efficacy of anidulafungin is driven by the area under the concentration-time curve (AUC)/MIC ratio. Determination of the anidulafungin AUC along with MIC values can therefore be useful. Since obtaining a full concentration-time curve to determine an AUC is not always feasible or appropriate, limited-sampling strategies may be useful in adequately estimating exposure. The objective of this study was to develop a model to predict the individual anidulafungin exposure in critically ill patients using limited-sampling strategies. Pharmacokinetic data were derived from 20 critically ill patients with invasive candidiasis treated with anidulafungin. These data were used to develop a two-compartment model in MW\Pharm using an iterative 2-stage Bayesian procedure. Limited- sampling strategies were subsequently investigated using two methods, a Bayesian analysis and a linear regression analysis. The best possible strategies for these two methods were evaluated by a Bland-Altman analysis for correlation of the predicted and observed AUC from 0 to 24 h (AUC(0-24)) values. Anidulafungin exposure can be adequately estimated with the concentration from a single sample drawn 12 h after the start of the infusion either by linear regression (R-2 = 0.99; bias, 0.05%; root mean square error [RMSE], 3%) or using a population pharmacokinetic model (R-2 = 0.89; bias, -0.1%; RMSE, 9%) in critically ill patients and also in less severely ill patients, as reflected by healthy volunteers. Limited sampling can be advantageous for future studies evaluating the pharmacokinetics and pharmacodynamics of anidulafungin and for therapeutic drug monitoring in selected patients

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore