41 research outputs found

    The impact of paratracheal lymph node metastasis in squamous cell carcinoma of the hypopharynx

    Get PDF
    The aim of this study was to analyze the prevalence and prognostic importance of paratracheal lymph nodes in squamous cell carcinoma of the hypopharynx. A retrospective review of 64 previously untreated patients with squamous cell carcinoma (SCC) of the hypopharynx that underwent surgery was performed. Ipsilateral paratracheal lymph node metastases occurred in 22% (14 out of 64) and the mean number of paratracheal lymph nodes dissected per side was 2.3 (range 1–6). Contralateral paratracheal lymph node metastases were present in 2% (1 out of 42). Sixty-seven percent with postcricoid SCC and 22% with pyriform sinus SCC developed clinical node-positive ipsilateral paratracheal lymph node metastases, whereas 11% with posterior pharyngeal wall SCC developed paratracheal metastases. There was a significant correlation between paratracheal lymph node metastasis and cervical metastasis (p = 0.005), and the primary tumor site (postcricoid, 57.1%; pyriform sinus, 20.0%; posterior pharyngeal wall, 8.3%) (p = 0.039). Patients with no evidence of paratracheal lymph node metastasis may have a survival benefit (5-year disease-specific survival rate, 60 vs. 29%). However, this result did not reach statistical significance (p = 0.071). The patients with SCC of the postcricoid and/or pyriform sinus were at risk for ipsilateral paratracheal lymph node metastasis; furthermore, patients with paratracheal node metastasis had a high frequency of cervical metastasis and a poorer prognosis. Therefore, routine ipsilateral paratracheal node dissection is recommended during the surgical treatment of patients with SCC of the postcricoid and/or pyriform sinus with clinical node metastases

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    C-Met

    No full text

    Sinonasal Lymphomas

    No full text

    The Brain in Hereditary Hemorrhagic Telangiectasia

    No full text
    corecore