78 research outputs found

    Quenching correction for in vivo chlorophyll fluorescence acquired by autonomous platforms: A case study with instrumented elephant seals in the Kerguelen region (Southern Ocean)

    Get PDF
    As the proxy for Chlorophyll a (Chl a) concentration, thousands of fluorescence profiles were measured by instrumented elephant seals in the Kerguelen region (Southern Ocean). For accurate retrieval of Chl a concentrations acquired by in vivo fluorometer, a two-step procedure is applied: 1) A predeployment intercalibration with accurate determination by high performance liquid chromatography (HPLC) analysis, which not only calibrates fluorescence in appropriate Chl a concentration units, but also strongly reduces variability between fluorometers, and 2) a profile-by-profile quenching correction analysis, which effectively eliminates the fluorescence quenching issue at surface around noon, and results in consistent profiles between day and night. The quenching correction is conducted through an extrapolation of the deep fluorescence value toward surface. Asproved by a validation procedure in the Western Mediterranean Sea, the correction method is practical and relatively reliable when there is no credible reference, especially for deep mixed waters, as in the Southern Ocean. Even in the shallow mixed waters, the method is also effective in reducing the influence of quenching

    A novel near real-time quality-control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances

    Get PDF
    An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called Case 1 waters. Around solar noon and almost everyday, each float acquires 0-250 m vertical profiles of Photosynthetically Available Radiation and downward irradiance at three wavelengths (380, 412 and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. Here, we present a data quality-control procedure aimed at verifying profile shapes and providing near real-time data distribution. This procedure is specifically developed to: 1) identify main issues of measurements (i.e. dark signal, atmospheric clouds, spikes and wave-focusing occurrences); 2) validate the final data with a hierarchy of tests to ensure a scientific utilization. The procedure, adapted to each of the four radiometric channels, is designed to flag each profile in a way compliant with the data management procedure used by the Argo program. Main perturbations in the light field are identified by the new protocols with good performances over the whole dataset. This highlights its potential applicability at the global scale. Finally, the comparison with modeled surface irradiances allows assessing the accuracy of quality-controlled measured irradiance values and identifying any possible evolution over the float lifetime due to biofouling and instrumental drift

    The chlorophyll seasonal dynamics in the Black Sea as inferred from Biogeochemical-Argo floats

    Full text link
    Biogeochemical-Argo (BGC-Argo) floats offer the opportunity to investigate the spatial and temporal dynamics of chlorophyll a (Chla) profiles. In the Black Sea, the unusual abundance of colored dissolved organic matter (CDOM) and the absence of oxygen below ∌80-100m require a revision of the classic formulation used to link the fluorescence signal and the algal chlorophyll concentration (e.g. Xing et al., 2017). Indeed, the very high content of CDOM in the basin is thought to be responsible for the apparent increase of Chla concentrations at depth, where it should be zero due to the absence of light. Here, the classic formulation to link fluorescence and Chla is revised based on a reference Chla dataset sampled during a scientific cruise onboard RV Akademik and analysed with High Performance Liquid Chromatography (HPLC). Then, using the established equation to remove the contribution of CDOM to the fluorescence signal, we estimated the Chla profiles from 4 BGC-Argo floats during the period 2014-2017. All Chla profiles were thus highly quality controlled by using the Argo documentation (Schmechtig et al., 2015). Especially, we removed bad data (e.g. spikes, outliers) and we corrected the Non-Photochemical Quenching effect, a photoprotective mechanism resulting in a decrease in the fluorescence signal at the surface. The Chla profiles are categorized based on fitting algorithms (e.g. sigmoid, exponential, gaussian) and empirical criteria. They display a large variety of shapes across the seasons (e.g. homogeneity in the mixed layer, subsurface maximum, double peaks below the surface, etc.) with roughly homogeneous profiles dominating between November and February while subsurface maxima are present during the rest of the year, with in summer a clearly-marked deep chlorophyll maximum (DCM). We then investigate the formation mechanism of DCMs based on the hysteresis hypothesis for the temperate ocean proposed by Navarro et al., (2013). For this, we looked at the correlation between the position of DCMs and the potential density anomaly of the mixed layer when it is maximum in winter, usually between February and March. We show that DCMs are highly correlated with the potential density anomaly of the previous winter mixed layer where a winter bloom initiated while the correlation with the 10% and 1% light levels is poor. This is in agreement with the hysteresis hypothesis that assumes that in regions where a bloom forms in late winter/early spring, this bloom remains established at a fixed density (i.e. the density of the mixed layer when it is maximum) until the end of summer acting as a barrier for the diffusion of nutrients from below and preventing the occurrence of deeper blooms due to a shading effect. This bloom is finally progressively eroded in autumn, when the depth of the mixed layer increases again

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Resupply of mesopelagic dissolved iron controlled by particulate iron composition

    Get PDF
    The dissolved iron supply controls half of the oceans’ primary productivity. Resupply by the remineralization of sinking particles, and subsequent vertical mixing, largely sustains this productivity. However, our understanding of the drivers of dissolved iron resupply, and their influence on its vertical distribution across the oceans, is still limited due to sparse observations. There is a lack of empirical evidence as to what controls the subsurface iron remineralization due to difficulties in studying mesopelagic biogeochemistry. Here we present estimates of particulate transformations to dissolved iron, concurrent oxygen consumption and iron-binding ligand replenishment based on in situ mesopelagic experiments. Dissolved iron regeneration efficiencies (that is, replenishment over oxygen consumption) were 10- to 100-fold higher in low-dust subantarctic waters relative to higher-dust Mediterranean sites. Regeneration efficiencies are heavily influenced by particle composition. Their make-up dictates ligand release, controls scavenging, modulates ballasting and may lead to the differential remineralization of biogenic versus lithogenic iron. At high-dust sites, these processes together increase the iron remineralization length scale. Modelling reveals that in oceanic regions near deserts, enhanced lithogenic fluxes deepen the ferricline, which alter the vertical patterns of dissolved iron replenishment, and set its redistribution at the global scale. Such wide-ranging regeneration efficiencies drive different vertical patterns in dissolved iron replenishment across oceanic provinces

    Multidisciplinary investigations of the diets of two post-medieval populations from London using stable isotopes and microdebris analysis

    Get PDF
    This paper presents the first multi-tissue study of diet in post-medieval London using both the stable light isotope analysis of carbon and nitrogen and analysis of microdebris in dental calculus. Dietary intake was explored over short and long timescales. Bulk bone collagen was analysed from humans from the Queen’s Chapel of the Savoy (QCS) (n = 66) and the St Barnabas/St Mary Abbots (SB) (n = 25). Incremental dentine analysis was performed on the second molar of individual QCS1123 to explore childhood dietary intake. Bulk hair samples (n = 4) were sampled from adults from QCS, and dental calculus was analysed from four other individuals using microscopy. In addition, bone collagen from a total of 46 animals from QCS (n = 11) and the additional site of Prescot Street (n = 35) was analysed, providing the first animal dietary baseline for post-medieval London. Overall, isotopic results suggest a largely C3-based terrestrial diet for both populations, with the exception of QCS1123 who exhibited values consistent with the consumption of C4 food sources throughout childhood and adulthood. The differences exhibited in ή15Ncoll across both populations likely reflect variations in diet due to social class and occupation, with individuals from SB likely representing wealthier individuals consuming larger quantities of animal and marine fish protein. Microdebris analysis results were limited but indicate the consumption of domestic cereals. This paper demonstrates the utility of a multidisciplinary approach to investigate diet across long and short timescales to further our understanding of variations in social status and mobility

    Human plague: An old scourge that needs new answers

    Get PDF
    Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague’s resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a “One Health” approach

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
    • 

    corecore