749 research outputs found

    Small molecule-mediated targeting of microRNAs for drug discovery: experiments, computational techniques, and disease implications

    Get PDF
    Small molecules have been providing medical breakthroughs for human diseases for more than a century. Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA-targeted small molecule inhibitors for disease treatment. This new approach is grounded in their posttranscriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of algorithms has allowed for the integration of computational strategies built on top of laboratory-based data, facilitating a more precise and rational design and discovery of lead compounds. To complement the use of extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational approach based on only molecular sequences. Moreover, various computational tools for predicting molecular interactions in biological networks using similarity-based inference techniques have been accumulated in established studies. However, there are a limited number of comprehensive reviews covering both computational and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness of deep learning for obtaining the physicochemical characterization of DTIs

    Single nucleus and spatial transcriptomic profiling of human healthy hamstring tendon

    Get PDF
    The molecular and cellular basis of health in human tendons remains poorly understood. Amongst human tendons, the hamstrings are the least likely to be injured or degenerate, providing a prototypic healthy tendon reference. The aim of this study was to define the transcriptome and location of all cell types in healthy hamstring tendon. We profiled the transcriptomes of 10,533 nuclei from 4 healthy donors using single-nucleus RNA sequencing (snRNA-seq) and identified 12 distinct cell types. We confirmed the presence of two fibroblast cell types, endothelial cells, mural cells, and immune cells, and revealed the presence of cell types previously unreported for tendon sites, including different skeletal muscle cell types, satellite cells, adipocytes, and nerve cells, which are undefined nervous system cells. Location of these cell types within tendon was defined using spatial transcriptomics and imaging, and transcriptional networks and cell-cell interactions were identified. We demonstrate that fibroblasts have a high number of potential cell-cell interactions, are present throughout the whole tendon tissue, and play an important role in the production and organisation of extracellular matrix, thus confirming their role as key regulators of hamstring tendon tissue homeostasis. Overall, our findings highlight the highly complex cellular networks underpinning tendon function and underpins the importance of fibroblasts as key regulators of hamstring tendon tissue homeostasis

    PRMT5 inhibition shows in vitro efficacy against H3K27M-altered diffuse midline glioma, but does not extend survival in vivo

    Get PDF
    H3K27-altered Diffuse Midline Glioma (DMG) is a universally fatal paediatric brainstem tumour. The prevalent driver mutation H3K27M creates a unique epigenetic landscape that may also establish therapeutic vulnerabilities to epigenetic inhibitors. However, while HDAC, EZH2 and BET inhibitors have proven somewhat effective in pre-clinical models, none have translated into clinical benefit due to either poor blood–brain barrier penetration, lack of efficacy or toxicity. Thus, there remains an urgent need for new DMG treatments. Here, we performed wider screening of an epigenetic inhibitor library and identified inhibitors of protein arginine methyltransferases (PRMTs) among the top hits reducing DMG cell viability. Two of the most effective inhibitors, LLY-283 and GSK591, were targeted against PRMT5 using distinct binding mechanisms and reduced the viability of a subset of DMG cells expressing wild-type TP53 and mutant ACVR1. RNA-sequencing and phenotypic analyses revealed that LLY-283 could reduce the viability, clonogenicity and invasion of DMG cells in vitro, representing three clinically important phenotypes, but failed to prolong survival in an orthotopic xenograft model. Together, these data show the challenges of DMG treatment and highlight PRMT5 inhibitors for consideration in future studies of combination treatments

    Single nucleus and spatial transcriptomic profiling of healthy human hamstring tendon

    Get PDF
    The molecular and cellular basis of health in human tendons remains poorly understood. Among human tendons, hamstring tendon has markedly low pathology and can provide a prototypic healthy tendon reference. The aim of this study was to determine the transcriptomes and location of all cell types in healthy hamstring tendon. Using single nucleus RNA sequencing, we profiled the transcriptomes of 10 533 nuclei from four healthy donors and identified 12 distinct cell types. We confirmed the presence of two fibroblast cell types, endothelial cells, mural cells, and immune cells, and identified cell types previously unreported in tendons, including different skeletal muscle cell types, satellite cells, adipocytes, and undefined nervous system cells. The location of these cell types within tendon was defined using spatial transcriptomics and imaging, and potential transcriptional networks and cell–cell interactions were analyzed. We demonstrate that fibroblasts have the highest number of potential cell–cell interactions in our dataset, are present throughout the tendon, and play an important role in the production and organization of extracellular matrix, thus confirming their role as key regulators of hamstring tendon homeostasis. Overall, our findings underscore the complexity of the cellular networks that underpin healthy human tendon function and the central role of fibroblasts as key regulators of hamstring tendon tissue homeostasis

    Correcting PCR amplification errors in unique molecular identifiers to generate accurate numbers of sequencing molecules

    Get PDF
    Unique molecular identifiers are random oligonucleotide sequences that remove PCR amplification biases. However, the impact that PCR associated sequencing errors have on the accuracy of generating absolute counts of RNA molecules is underappreciated. We show that PCR errors are a source of inaccuracy in both bulk and single-cell sequencing data, and synthesizing unique molecular identifiers using homotrimeric nucleotide blocks provides an error-correcting solution that allows absolute counting of sequenced molecules

    Computer software for business and specific purposes in wood industry

    Get PDF
    V 211 slovenskih mikro in majhnih lesnih podjetjih, katerih osnovna dejavnost (po SKD) zajema proizvodnjo pohištva za poslovne prostore, proizvodnjo kuhinjskega pohištva in proizvodnjo drugega pohištva, smo preučili razširjenost ter uporabo poslovnih in namenskih računalniških programov. Raziskava je temeljila na primerjalni analizi in oceni stanja programske opreme. Oceno stanja smo izvedli s pomočjo ankete, ki smo jo distribuirali prek različnih medijev. Odziv na anketo je bil v povprečju 23,7 %. Ocenimo lahko, da so računalniški programi v mikro in majhnih lesnih podjetjih na nekaterih področjih intenzivneje uporabljani kot na drugih. Ugotovili smo, da podjetja v večini uporabljajo pri poslovanju pisarniške programe, predvsem tiste podjetja Microsoft. Uporaba specializirane programske opreme je še precej omejena, saj jo pri poslovanju uporablja le 40 % preučevanih podjetij. Nekoliko bolj uporabljajo programsko opremo namenjeno konstruiranju (60 %).The range and usage of computer software for business and specific purposes were researched in 211 micro and minor wood firms, encompasing the production of office furniture, kitchen furniture and some other furniture as the basic activity, according to Statistical Classification Activities (SCA). The research was based on comparative analysis and software condition evaluation. Evaluation of the current situation was carried out by means of a questionnaire, distributed with the help of media. The response was as high as 23.7 %. It can be estimated that the computer software in these micro and minor wood firms is used more often in some areas than in others. It was found out that the firms use mainly office software- especially Microsoft ones. The usage of specialized software equipment is still quite limited in these firms. Only 40 % of the tested firms use is software for their business, meanwhile the equipment designed for construction is more frequently used (60 %)

    Epigenetic-focused CRISPR/Cas9 screen identifies (absent, small, or homeotic)2-like protein (ASH2L) as a regulator of glioblastoma cell survival

    Get PDF
    Background: Glioblastoma is the most common and aggressive primary brain tumor with extremely poor prognosis, highlighting an urgent need for developing novel treatment options. Identifying epigenetic vulnerabilities of cancer cells can provide excellent therapeutic intervention points for various types of cancers. Method: In this study, we investigated epigenetic regulators of glioblastoma cell survival through CRISPR/Cas9 based genetic ablation screens using a customized sgRNA library EpiDoKOL, which targets critical functional domains of chromatin modifiers. Results: Screens conducted in multiple cell lines revealed ASH2L, a histone lysine methyltransferase complex subunit, as a major regulator of glioblastoma cell viability. ASH2L depletion led to cell cycle arrest and apoptosis. RNA sequencing and greenCUT&RUN together identified a set of cell cycle regulatory genes, such as TRA2B, BARD1, KIF20B, ARID4A and SMARCC1 that were downregulated upon ASH2L depletion. Mass spectrometry analysis revealed the interaction partners of ASH2L in glioblastoma cell lines as SET1/MLL family members including SETD1A, SETD1B, MLL1 and MLL2. We further showed that glioblastoma cells had a differential dependency on expression of SET1/MLL family members for survival. The growth of ASH2L-depleted glioblastoma cells was markedly slower than controls in orthotopic in vivo models. TCGA analysis showed high ASH2L expression in glioblastoma compared to low grade gliomas and immunohistochemical analysis revealed significant ASH2L expression in glioblastoma tissues, attesting to its clinical relevance. Therefore, high throughput, robust and affordable screens with focused libraries, such as EpiDoKOL, holds great promise to enable rapid discovery of novel epigenetic regulators of cancer cell survival, such as ASH2L. Conclusion: Together, we suggest that targeting ASH2L could serve as a new therapeutic opportunity for glioblastoma

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
    corecore