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A B S T R A C T   

Small molecules have been providing medical breakthroughs for human diseases for more than a century. 
Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite 
the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal 
chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA- 
targeted small molecule inhibitors for disease treatment. This new approach is grounded in their post
transcriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression 
using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of al
gorithms has allowed for the integration of computational strategies built on top of laboratory-based data, 
facilitating a more precise and rational design and discovery of lead compounds. To complement the use of 
extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational 
approach based on only molecular sequences. Moreover, various computational tools for predicting molecular 
interactions in biological networks using similarity-based inference techniques have been accumulated in 
established studies. However, there are a limited number of comprehensive reviews covering both computational 
and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and 
computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical 
significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness 
of deep learning for obtaining the physicochemical characterization of DTIs.   

1. Introduction 

Small molecules have long been recognized as a cornerstone in drug 
development for treating a wide variety of human diseases [1,2]. As of 
January 2023, the DrugBank database (current version: 5.1.10) has 
compiled 2736 small molecule drugs that are approved by the Food and 
Drug Administration (FDA), with over 4500 in preclinical or animal 
testing stages [3]. Recently, there has been a surge in interest in 
discovering small molecule inhibitors that specifically target noncoding 

RNAs (ncRNAs) [4,5]. 
Protein-coding genes make up about 1.5% of the human genome [6, 

7], of which only 3–4% is considered druggable targets [8]. The vast 
majority of undruggable proteins pose challenges for disease treatment, 
prompting researchers to explore targeting ncRNAs, especially, to 
address the issues on dysregulated post-transcriptional regulation [9, 
10]. ncRNAs are a class of RNA molecules that do not encode proteins, 
constituting around 70% of the eukaryote transcriptome [8]. Taking into 
account regions like introns and 3′ and 5′ untranslated regions, the 
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proportion of non-coding RNA molecules can encompass approximately 
95–98.5% of the total RNA proportion in a cell [7,11,12]. The extensive 
presence of these RNA molecules, combined with their important roles 
in gene regulation, makes them attractive drug targets [13]. A major 
class of ncRNAs is microRNAs (miRNAs), which are crucial for regu
lating cellular activities [14]. Small molecule-mediated targeting of 
miRNAs can occur before and after miRNA maturation. More recently, 
research by Childs-Disney et al. has advanced our understanding of the 
small molecule-mediated targeting of miRNAs by identifying inhibitors 
that bind to the tertiarily folded structures of miRNAs [15]. Subse
quently, several other molecules have been identified that work using a 
similar mechanism [8,16–18], leading to a deeper understanding of 
small-molecule RNA binding. This understanding has been particularly 
useful in elucidating how stem-loop hairpin secondary structures are 
folded into tertiary structures, resulting in the formation of pockets or 
bulges (such as those found near the Dicer processing site [17]) that aid 
in small molecule interactions. As a result of this enhanced under
standing of small molecule-mediated targeting of miRNAs at the mo
lecular level, researchers have been able to pursue computational 
rational design for lead compounds and develop algorithms to predict 
small molecule-miRNA interactions. 

Computational approaches for small molecule drug discovery can be 
broadly categorized into two groups from a structural perspective, based 
on whether they leverage information about the structure-activity re
lationships of small molecules [19] and/or the structural details of 
miRNA targets. In addition to establishing connections between diseases 
and small molecules, approaches that incorporate such information can 
also partly or fully facilitate lead compound design [20]. For instance, 
Inforna has pioneered a novel strategy for discovering small molecule 
drugs targeting oncogenic miRNA targets by mining from a large dataset 
of RNA-motif small-molecule interaction pairs, sourced from a 
microarray-screened library [21]. Specifically, it uses predicted struc
ture annotations of a miRNA of interest to probe highly similar RNA 
motifs that interact with small molecules. Then, through an algorithmic 
scoring scheme, the potential small molecules are prioritized for pro
ducing lead compounds that are mostly like to treat cancer [22]. On the 
other hand, the second category often utilizes the information about 
molecular sequences or simply drug-target as well as target-disease re
lationships for drug screening [23,24], which can be achieved by using a 
variety of similarity-based inference methods [25] or machine learning 
methods [26]. Recently, we developed deep learning approaches to 
predict the specific regulation types between a small molecule and a 
miRNA, relying solely on molecular sequence information [27]. Subse
quently, we implemented a drug repositioning strategy that connects a 
drug and a disease using calculated connectivity scores through the 
overlapped disease and drug relationships with miRNAs (as in 
Ref. [28]). These connectivity scores were introduced to facilitate drug 
repositioning based on distinct upregulation and downregulation in
formation [29], which was obtained through statistical tests using 
gene/transcriptional expression data from large-scale pharmacoge
nomic studies [30,31]. Nonetheless, the scarcity of miRNA expression 
data associated with numerous small molecules makes it difficult to 
address using existing techniques, as generating such data requires 
considerable experimental effort. In this context, computational strate
gies offer an alternative solution to readily generate information about 
miRNA regulation. 

In this review, we attempt to summarize the small molecule- 
mediated targeting strategies for the discovery of drugs for both pro
tein and miRNA targets. We cover the functional importance of miRNAs 
as small-molecule targets, disease implications, clinical applications, 
and miRNA pharmacogenomics. We also benchmark three key predic
tion problems in early drug discovery: predicting small molecule-miRNA 
(SM-miR) associations [32], SM-miR regulation types [27], and 
drug-target interactions (DTIs) [33]. To assess the current status of the 
DTI prediction based on sequences alone, we analysed the DrugBank 
database using deep learning methods, achieving an area under the 

curve (AUC) of approximately 95% for independent test DTIs and 75% 
for those involving novel drugs. Recognizing the transformative poten
tial of artificial intelligence, we additionally provide an overview of key 
deep learning methodologies in DTI prediction [34,35]. Our review 
complements existing literature by integrating experimental and 
computational aspects of drug discovery. 

2. miRNA dysregulation in diseases 

Due to their critical role in gene expression regulation, miRNAs have 
been implicated in a wide spectrum of diseases [14,36]. For example, 
the overexpression of miR-17–92, a widely studied miRNA cluster [37], 
is found to result in inhibiting proximal epithelial cell differentiation 
[38] and polycystic kidney disease (PKD) [39]. Regulus Therapeutics 
has developed a first-in-class oligonucleotide-based drug RGLS4326 to 
treat PKD by targeting miR-17, a member of the miR-17–92 family [37]. 
Its clinical trials are currently underway [40,41]. Also, long noncoding 
RNAs (lncRNAs), another major component of ncRNAs (>100,000 
human lncRNAs [42]), are highly associated with a large number of 
human diseases [43,44]. For example, the LncRNADisease database 
(v2.0) has currently compiled 10,002 lncRNA-disease associations that 
are detected in humans, which account for 94.7% of all the associations 
[45]. Dysregulated expression levels of multiple miRNAs are often 
observed in a single disease. For example, Yanaihara et al. conducted a 
correlation analysis of miRNA expression profiles in patients with lung 
adenocarcinoma and discovered the aberrant expression of several 
miRNAs, such as the upregulation of mir-155, the downregulation of 
let-7a-2, and the downregulation of mir-145. The expression of these 
miRNAs was found to be correlated with the patient survival time [46]. 
miRNAs can also work in conjunction with other types of molecules to 
exert and amplify oncogenic effects in diseases. For example, the Myc 
oncogene (encoding a transcription factor in charge of transcription 
events of ~15% genes [47]) and miR-155 have been seen to be 
co-overexpressed to promote B-cell lymphomas [48]. These findings 
imply that the complex interplay of a combination of dysregulated 
miRNAs may contribute to the severity of certain diseases. 

3. Small molecules targeting miRNAs for cancer therapeutics 

Physical interactions of multiple kinds of biological molecules with 
miRNAs of interest provide the potential to alter the functions of the 
miRNAs, which has made it possible to regulate their controlled genes 
that are abnormally expressed in human diseases. This has opened up 
extensive possibilities for developing miRNA targeting strategies using 
small molecules [4], miRNA sponges [49], or antisense oligonucleotides 
[50]. The efficacy of using oligonucleotides and small molecules is dis
cussed in detail as in Refs. [17,21], which indicate that small molecules 
possess several advantages over oligonucleotides, such as greater 
selectivity for inhibition and increased cell permeability under specific 
conditions. Our review is centred on the targeting of miRNAs by small 
molecules. Rather than directly inhibiting disease-related gene targets, 
small molecules achieve therapeutic effects by regulating the tran
scriptional expression of miRNAs, which subsequently affects the 
expression of malfunctioning gene targets indirectly [4]. Small 
molecule-mediated regulation of miRNAs can occur at many stages over 
the course of miRNA biogenesis (see Fig. 1). Specifically, small mole
cules can achieve therapeutic effects not only by directly binding to 
mature miRNAs but also by binding to the functional sites (such as 
DROSHA processing sites) in miRNA precursors where mature miRNAs 
are located, inhibiting the biogenesis of miRNAs, as suggested by 
Childs-Disney et al. [15]. Aside from targeting the functional sites, Li 
and Rana described two additional methods for regulating miRNA 
expression: blockading the assembly of pri-miRNAs and obstructing the 
formation of the miRNA-induced silencing complex (miRISC) [4], which 
affect the miRNA maturation and mRNA degradation processes, 
respectively [51]. Similar to disrupting the miRISC, small molecules 

J. Sun et al.                                                                                                                                                                                                                                      



European Journal of Medicinal Chemistry 257 (2023) 115500

3

could target other miRNA-binding proteins (miRBPs) to modulate 
miRNA expression, such as LIN28 [52], Toll-like receptors [53], and 
non-canonical bacterial RBPs [16]. The mechanism of small molecule 

therapeutics is self-explanatory, as they can induce a change in gene 
expression profiles in diseases by targeting miRNAs, irrespective of 
whether the altered miRNA expression arises from mRNA degradation 

Fig. 1. Small molecule therapeutics targeting the 
biogenesis of miRNAs. In the cell nucleus, miRNA 
genes are first transcribed by RNA polymerase II into 
primary transcripts (pri-miRNAs) whose mono
cistronic, polycistronic, and/or intronic regions (see a 
comprehensive review [249]) possess the character
istic hairpin secondary structures [51] in which 
mature miRNA sequences are located [250]. After 
being recognized by DGCR8 (i.e., DiGeorge critical 
region 8, the RNA-binding protein) [251] and Drosha 
(i.e., the RNase III enzyme) [252], these hairpin 
structures are then cleaved to produce the precursor 
miRNAs, known as pre-miRNAs [253]. Subsequently, 
the pre-miRNAs are transported by exportin-5 [254] 
to the cytoplasm, in which they are converted into 
mature miRNAs through the Dicer-mediated pro
cessing mechanism [245,255]. The mature miRNAs 
culminate in being loaded with the Argonaute (AGO) 
protein into a bioactive miRNA-induced silencing 
complex (miRISC). The loaded miRNAs will guide 
miRISCs to initiate its binding to the complementary 
sequences in the 3′untranslated region (UTR) of their 
mRNA targets [256]. The result of miRNA binding is 
the silencing of the target gene [58], which occurs in 
a phased manner over time [256]. During the early 
phase, the target gene’s translation is inhibited [249], 
while in the later phase, mRNAs transcribed by the 
affected genes are degraded through mechanisms 
such as mRNA deadenylation [257]. This phased 

progress gives miRNAs two distinct roles: the inhibition of gene translation and the degradation of mRNAs [258]. The dysregulation of the expression of the miRNAs 
will cause the onset of their regulated disease pathways, while the small molecule identified as being helpful for inhibition can be used to rectify the dysregulation of 
the miRNA expression for disease treatment. For example, this can be achieved by targeting pri-miRNAs and pre-miRNAs within the nucleus and miRISCs in the 
cytoplasm.   

Fig. 2. Illustration of chemical approaches for target- 
centric screening of small molecules in a high- 
throughput manner. (a) Fluorescence resonance en
ergy transfer (FRET)-based screening. The experiment 
parameters of this approach are set in a way that a 
miRNA-binding protein (miRBP, e.g., Lin28A and 
Lin28B [16]) is tagged with a fluorescence indicator 
and a quencher is attached to a primary miRNA 
(pri-miRNA) encoded by the let-7 gene. The binding 
of the miRBP to the pri-miRNA will induce quenching 
of the fluorescence. A small molecule inhibitor of the 
pri-miRNA will restore the fluorescence through 
disruption of the binding [16,58]. (b) small molecule 
microarray (SMM)-based assay screening. Small 
molecules are immobilized on the microarray plate to 
await the binding of a labelled miRNA [15,59]. Then, 
high-fidelity signals are shown if the binding occurs. 
(c) Affinity selection mass spectrometry (AS-MS) 
screening. Comparatively, the AS-MS-based approach 
uses label-free targets to screen small molecule in
hibitors. The miRNA target is incubated for binding to 
small molecules. Their complexes are first purified 
using the chromatography technique and then small 
molecules are dissociated from the miRNA target 
using the reverse-phase chromatography technique. 
Finally, the abundance of different small molecules 
that can bind to the target is generated using AS-MS. 
This review collects abundant case studies by using 
these varying HTS techniques [259].   
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or miRNA assembly processes. 

4. Experimental determination of interactions between small 
molecules and miRNAs 

The increasing number of experimentally-evidenced cases from the 
RNA-targeted drug discovery field demonstrates the utility of small 
molecule inhibitors in targeting specific miRNAs (SMIRs) for disease 
treatment [54]. It has been estimated that the quantity of RNA targets is 
roughly of at least two orders of magnitude as that of protein targets 
[55]. In contrast to the growing number of experimentally resolved 
protein structures in the protein data bank (PDB), the accumulation of 
RNA-only structures has remained stagnant, with an annual of only 
70–100 annually deposited structures over the past decade (~1% 
compared to proteins [56]). Moreover, it is likely that miRNAs only 
make up a small proportion of these structures. 

In addition to high-fidelity structure models, there are several high- 
throughput screening (HTS) techniques available to precisely and 
promptly determine SMIRs from a large compound library, to identify 
lead compounds targeting specific miRNAs involved in human disease 
pathogenesis [57]. These established techniques mainly include, 
fluorescence-based assay screening, small molecule microarray 
(SMM)-based assay screening, fragment-based screening, and affinity 
selection mass spectrometry (AS-MS) screening [4,8,15,17,51]. These 
methods are destined for high-throughput screening of large small 
molecule libraries against one or more specific miRNA target(s), as 
shown in Fig. 2. Fluorescence-based assay screening approaches possess 
several derivatives depending on detecting the intensity from fluores
cence molecules collectively or individually [58]. In particular, an 
example of such a derivative is the fluorescence resonance energy 
transfer (FRET)-based screening approach, which relies on the principle 
that the fluorescence quenching will not occur if a small molecule in
hibitor successfully targets a quencher-attached miRNA that has physi
cally bound to a fluorescence-labelled molecule [16,58]. We only 
summarized FRET-based screening approach in this review. Small 
molecule inhibitors are identified by the SMM-based approach in a way 
that high-fidelity signals are shown on the microarray, in which a library 
of small molecules are immobilized to attempt to bind to labelled miRNA 
targets [15,59]. The fragment-based approach leverages a library of 
small molecules of low molecular weight as fragments to vet the possi
bilities of them binding to miRNA targets. Then, these possibilities are 
translated into signals by using, for example, NMR spectroscopy, which 
are partitioned into two groups to be indicative of bound and unbound 
fragments, respectively (as depicted in Ref. [60]). Comparatively, the 
AS-MS-based approach uses label-free targets to screen small molecule 
inhibitors. Using automated ligand identification system (ALIS), a type 
of the AS-MS-based approach, binding small molecule ligands are first 
dissociated from chromatography-purified ligand-target complexes after 
incubation and then examined from mass spectrometry signals. In 
addition, there are also a few other approaches for this purpose, such as 
phenotype-based screening [20], DNA-encoded compound 
library-based screening [15], and pharmacological validation screening 
[61]. It is worth mentioning that the phenotype-based approach can 
work by overlooking the reliance on the knowledge about 
disease-associated targets and shortlists small molecules that are able to 
counteract the pathogenic effect of a disease-associated phenotype [57]. 
The main characteristics of the approaches are summarized in Table 1. 

5. Clinical applications of ncRNA drugs or targets 

Despite the tremendous efforts made to study small molecule in
hibitors targeting ncRNAs, clinical applications are still in their infancy 
[40]. However, miRNAs play an important role in being targeted by 
drugs or targeting other disease-associated genes [62]. According to the 
statistics presented by Zhang et al. [63], there are tens of siRNA (as 
drugs)- and miRNA (as targets)-related therapeutics that have been 

entered into different phases of clinical trials. For example, RG-101, 
developed by Regulus Therapeutics, is an GalNAc-conjugated anti-
miRNA oligonucleotide sequence to target miRNA-122 against hepatitis 
C virus infection [40]. However, small molecule inhibitors of miRNAs 
remain to be tested out only in the lab. For example, using a 
small-molecule microarray platform called AbsorbArray, a couple of 
topoisomerase inhibitors were shown to bind to the A bulge in the Dicer 
site of pre-miR-21 for inhibition of miR-21 expression, which affected 
the expression of their regulated genes in triple negative breast cancer 
[64]. 

In addition, lipid nanoparticle (LNP) drug delivery systems loading 
with siRNA-based drugs (trade name: Onpattro) has been approved by 
FDA to treat polyneuropathies [65]. Like the low success rate of 
discovering drugs for targeting other disease-related agents (i.e., pro
teins), the commercial development of miRNA therapeutics is con
fronted with a high failure rate, with a large majority of the therapeutics 
suspended over the course of drug discovery. But the analysis from 
Ref. [63] also demonstrates high rates of ncRNA therapeutics (40% for 
both miRNAs and siRNAs) that are being subjected into phase II clinical 
trials or more. Nevertheless, generating miRNA therapeutics for disease 
treatment is still of prime interest to a number of pharmaceutical in
dustries, including miRagen Therapeutics and Regulus Therapeutics 
[66,67]. 

6. Experimental determination of drug-target interactions 

In this review we refer to the interactions between drugs and protein 
targets as drug-target interactions (DTIs). Mass spectrometry (MS)-based 
chemical proteomics approaches, including activity-based protein 
profiling (ABPP) [68] and compound-centric chemical proteomics 
(CCCP) [69], have been introduced as a powerful tool in 
high-throughput to yield a large number of interactions between small 
molecule drugs and protein targets [70,71]. In addition, the evidence for 
biophysical binding and structural details can also be detected through 
functionally active protein-compound complexes by the nuclear mag
netic resonance (NMR) spectroscopy [72]. The modulation of protein 
functions is achieved by targeting the protein-protein interaction (PPI) 
interfaces by chemical compounds [73–75]. As highlighted in Refs. [76, 
77], NMR excels at capturing the fine-grained local chemical environ
ment/structure compared to cryo-electron microscopy (cryo-EM) [78] 
as well as X-ray crystallography [79], which makes it more capable of 
determining DTIs. It is certain that there exist alternative methods for 
biophysical interaction detection (see this review [80]). There is no 
doubt that membrane proteins constitute a predominant proportion of 

Table 1 
Summary of important characteristics of several mainstream HTS methods.  

HTS Method Material Note 

Fluorescence 
resonance energy 
transfer (FRET)- 
based screening 

Quencher and fluorescence The binding of a small 
molecule inhibitor to the 
pri-miRNA prevents 
quenching. 

Small molecule 
microarray (SMM)- 
based assay 
screening 

Immobilized small 
molecules, microarray 
plates, fluorescence 
microscopy 

Fluorescence intensities 
that appear and deepen in 
a pore on the microarray 
indicates the binding of a 
small molecule inhibitor 
to the miRNA target. 

Affinity selection 
mass spectrometry 
(AS-MS) screening 

Chemical libraries, 
chromatography, reverse- 
phase chromatography, mass 
spectrometry 

Purification of compound- 
binding miRNAs as many 
as possible is necessary for 
accurate quantification. 

Fragment-based 
screening 

Small molecule libraries, 
NMR spectroscopy 

A library of small 
molecules of low 
molecular weight as 
fragments to vet their 
possibilities of binding to 
miRNA targets.  
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all targets [81,82], since they are estimated to involve the transduction 
of around 85% cell signals [83]. Based on the most recent DrugBank 
database (version: 5.1.9) [84], we calculate around 50% of all targets as 
transmembrane proteins, which are targeted by FDA-approved drugs. 

7. Connectivity scores for drug repositioning 

The treatment of cells with drugs can induce changes in gene 
expression levels, leading to a variety of gene expression signatures (a 
gene or a group of genes, cf. deregulated genes [85] and drug pertur
bation signatures [86]) that are differentially expressed as a result of 
cellular responses to this treatment [87]. Such drug-induced gene 
expression signatures are conducive to decipher a certain gene expres
sion pattern(s) occurring in a disease and further favour the drug 
development for the disease [29]. This has given rise to large-scale 
clinical pharmacogenomic studies [88,89], which yield massive data
sets of gene expression matrices induced by a large quantity of drugs, 
termed drug perturbation datasets [90]. In comparison, there are also 
drug sensitivity datasets for screening cancer cell lines (see Refs. [31,91, 
92]). Note that main approaches for miRNA expression profile mea
surement comprise qRT-PCR, microarrays, and RNA-seq (for details, see 
Ref. [93]). These pharmacogenomic datasets can be experimentally 
generated through many cancer models [94], such as patient-derived 
cancer cell lines [95], organoids [96], and xenografts (PDXs) [97], 
which serve as valuable resources to predict drug responses and identify 
biomarkers. We focus on the drug perturbation datasets in the following 
parts. Despite rapid growth in the number of online resources that are 
powerful for studying drug perturbation behaviours (e.g., CMAP [29] 
and a scale-up version of CMAP, L1000 [98], see also a review [30]), 
there might exist some concerns in terms of the size of the data as well as 
the quality of the data, as pointed out by Sharifi-Noghabi et al. [91] and 
Keenan et al. [99], respectively. Nevertheless, by exploiting drug 
perturbation datasets in conjunction with disease-gene datasets, the 
associations between drugs and diseases can be established. 

Connectivity scores have been developed to infer such associations 
between drugs and diseases. The recently developed recommended 
connectivity-map scoring method (RCSM) package serves as a repertoire 
of connectivity scores [28], which contains, for example, the gene set 
enrichment analysis (GSEA) method and the reverse gene expression 
score. In the RCSM package, the KS module ranks the gene expression 
signature of a drug based on the log fold change of gene expression in a 
bidirectional fashion. In short, this process initiates the classification of 
the downregulated and upregulated genes of a gene expression signa
ture, and moves to rank these genes within each category, which are 
however retained in the same gene list where the upmost gene is the one 
with the biggest log fold change value and the downmost gene is the one 
with the smallest log fold change value. However, differentially 
expressed genes (DEGs) identified via a threshold of log-fold change 
values together with the p-value information based on gene expression 
matrices (especially miRNA expression matrices) may not easily be 
accessible due to many ad hoc experimental efforts. Rather than using 
the information about DEGs derived from expression matrices, the drug 
repositioning process presented on the DeepsmirUD-Web website ex
ploits a new miRNA expression regulation profile predicted by Deep
smirUD (a recently released deep learning implementation) [27], which 
we referred to as small molecule-mediated regulatory effects on miRNA 
expression in the DeepsmirUD work. DeepsmirUD performs the infer
ence of the small molecule-mediated downregulation and upregulation 
profiles of miRNA expression based solely on molecular sequences of 
miRNAs and small molecules without relying on an expression matrix 
specific to a list of drugs in the treatment of disease in a certain cell state. 
Similarly, this miRNA expression dysregulation profile allows the clas
sification of downregulated and upregulated miRNAs. But differently, it 
cannot be used to indicate DEGs based on statistical tests because the 
predicted value for each miRNA represents how likely the miRNA 
expression is downregulated or upregulated by a query small molecule. 

Correspondingly, the most top-ranked miRNA represents the one that is 
most strongly inferred as being upregulated by the query small mole
cule. We stress this difference in terms of the utilization of statistical 
tests for examination of the extent of the differential expression genes 
profile of a gene signature, which makes this scheme a trade-off for drug 
repositioning based on molecular sequences and connectivity scores. 
Nevertheless, the DeepsmirUD-predicted downregulation and upregu
lation profiles make it possible to infer drug-disease associations by 
virtue of only sequences. These results may be useful to some degree, 
insofar as we presented a few successfully inferred examples in the 
DeepsmirUD work [27]. The comparison between the standard scheme 
and our piloted scheme is schematically illustrated in Fig. 3. We detail 
the formulation of this drug-disease association process involving 
DeepsmirUD predictions as follows. 

The crux of this idea for drug discovery is the leveraging of statistical 
tests of genes that are overlapped between the drug-induced gene 
signature and a list of disease-associated genes [100,101]. One of the 
earliest connectivity scoring schemes is a type of gene set enrichment 
score (GSES) calculated based on the non-parametric Kolmogor
ov-Smirnov (KS) test method [29,102,103], which is integrated into the 
CMAP 1.0 database [28]. We dubbed this method GSES-KS in this re
view. Because of its use without relying on an ordered list of 
disease-associated genes, we have previously introduced this GSES-KS 
method into the DeepsmirUD work to discover drugs using an unor
dered list of disease-associated miRNAs from miRCancer [104]. Two KS 
statistics are first constructed as 

a= max
0≤i≤NmiR

(
i

NmiR
−

p
LSM− miR

)

b= max
0≤i≤NmiR

(
p

LSM− miR
−

i − 1
NmiR

)

where the miRNA expression signature of drug A is denoted as LSM− miR 
that contains Nsm− miR miRNAs and disease-associated miRNA list is 
denoted as Ldz− miR that contains Ndz− miR miRNAs. The number of miRNAs 
that are overlapped between LSM− miR and Ldz− miR is NmiR. p represents the 
position ith of a gene in the ranked LSM− miR miRNA expression signature 
in ascending order of the DeepsmirUD-predicted values in both down
regulation and upregulation directions. 
{

GSES − KS+ = a, a > b
GSES − KS− = − b, a < b  

where the GSES − KS+ score indicates a profile for upregulated miRNAs 
in a given disease and the GSES − KS− score indicates a profile for 
downregulated miRNAs in the disease. Then, the connectivity score 
GSES − KS is given by 

GSES − KS=
{

GSES − KS+ − GSES − KS− , c
0, otherwise  

where c means that both GSES − KS+ and GSES − KS− are positive or 
negative values. Finally, the connectivity score is normalized as 
(GSES − KS)norm ranging from − 1 to 1. It should be noted that the 
availability of multiple connectivity scores actually allows much flexi
bility in building the relationships between the DeepsmirUD-predicted 
miRNA expression signature and the disease-associated miRNAs. In ef
fect, the application of the connectivity scoring schemes or the CMAP 
databases has begun to extend to a few fields, including identifying 
active ingredients from traditional Chinese medicine [105,106]. 

8. Reverse pharmacological profiles of structurally similar small 
molecules 

It is crucial to exercise caution when processing drug-target associ
ation/interaction data, as it may significantly impact the quality of 
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computational analysis and prediction. Small changes in the structure of 
a molecule can lead to large perturbations in its chemical activity, a 
phenomenon that is well known in molecular design [107–109]. It has 
been suggested that a slight chemical modification on an antagonist, 
which binds to the human A3 adenosine receptor (hA3AR), turns it to an 
agonist [110]. In the hA3AR-agonist model, the agonistic compound 
induces an intense conformational change of the hA3AR, while in the 
hA3AR-antagonist model, the antagonistic compound keeps the hA3AR 
activity in check [110,111]. By comparing the two structures, we find 
that two compounds derived from their respective models are shown to 
be highly structurally similar, as evidenced by a Tanimoto coefficient of 
0.992. Both agonistic and antagonistic modes of this compound are of 
pharmaceutical significance to act on the pathogenic mechanisms of 
different diseases as potential drugs. However, it poses a grand challenge 
to computational analysis. For instance, if the two triplets of drug-target 
responses (hA3AR-agonist-activation and hA3AR-antagonist-inhibition) 
are catalogued into a cohort for a two-label classification problem, the 
optimization process or the ultimate performance of machine learning 
models could deteriorate by simultaneously considering the two samples 

with extremely similar features (i.e., hA3AR-agonist) but completely 
different labels (i.e., activation and inhibition). This is because the as
sociation types (labels) that are formed biologically are sometimes in
dependent of the sequence or structural similarity between small 
molecules, miRNAs, or both. Therefore, this could potentially compli
cate the situation of reducing the redundancy of drug and target data, i. 
e., particularly whether to remove those similar samples across all cat
egories (activation and inhibition) or simply within each category. 

9. Deep learning 

9.1. Convolution-based deep learning architectures 

Deep learning algorithms are methods that learn representations by 
automatically extracting features from input data [112]. This enables a 
diminished involvement of domain experts with the preparation of 
crafted features, which makes it possible to gain a high degree of ac
curacy that is equivalent to the utilization of features from a tedious, 
arduous preparation process [113]. The learning process involves linear 

Fig. 3. Drug repositioning using connectivity scores. miRNA signatures of a disease of interest are scanned from a database of disease-miRNA relationships and 
represented by two groups of miRNAs: upregulation or downregulation. Conventionally, the drug repositioning process then queries a reference database for pattern 
matching of small molecule-induced miRNA signatures with the disease-related miRNA signatures. Such a reference database is obtained from purpose-built large- 
scale clinical pharmacogenomic studies and represented by a small molecule-induced gene expression matrix. Within each small molecule, the gene signature is 
generated and ranked by differential expression analysis. The symbols of the resulting logfold change values indicate whether genes within the small molecule are 
downregulated or upregulated. The ranks of genes within the small molecules are decided by the logfold change values (see Ref. [28] for explanation). Due to the 
time-consuming nature of the experiment process, the gene expression profiles cannot be accessed easily. Our piloted scheme allows for generating the regulation 
effect of each small molecule on the expression of each miRNA through only their biological sequences. In this scheme, DeepsmirUD-predicted regulation profiles are 
used to replace the small molecule-induced gene expression profiles. In comparison, genes within each small molecule are identified as being downregulated or 
upregulated by the predicted regulation type while their ranks within the small molecule are decided by the predicted probabilities. The final connectivity scores are 
generated by the Kolmogorov-Smirnov (KS) statistic test to indicate the druglike potential of small molecules using the two routes, respectively. 
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(e.g., the addition operation) or non-linear (e.g., the ReLU activation 
function [114]) transformations of input data being fed into neurons 
from one to another neural layer [115]. To satisfy these meets, deep 
learning algorithms often have proprietary architectures, which are 
constructed using a few basic unit layers, including convolutional layers 
[116], recurrent layers [117], and graphical convolutional layers [118]. 
As summarized in this review [119], the same or different types of these 
layers are assembled into convolutional neural networks (CNNs) [120], 
recurrent neural networks (RNNs) [121], and graphical convolutional 
neural networks (GCNs) [122] through, for example, parameter sharing 
settings [123]. For deep neural networks pertaining to convolutional 
layers, subsampling is inevitably involved in their assembly processes as 
it can reduce computational costs significantly [124]. Common sub
sampling strategies include channel-wise or element-wise max-pooling 
or average-pooling operations [125]. 

We have found the use of deep learning architectures of convolu
tional layers connected in multiple ways to be highly effective in pre
dicting small-molecule-mediated regulatory effects on miRNA 
expression [27] as well as drug-target interactions (given in sections 
below). Therefore, we mainly confine the deep learning part of this re
view to the introduction of the convolution-based models. We present a 
couple of representative architectures, including ResNets [126], Den
seNets [127], and SCAResNets [128], that produce a series of stably 
varying values of evaluation metrics (e.g., AUC or AUCPR) across 
training epochs than other types of architectures in the two learning 
tasks above. The main characteristics of the models used in the Deep
smirUD work are summarized in Table 2. The similarity and difference 
between these models are summarized as follows. 

Fig. 4. Deep learning approaches for learning and discovering the pattern of relationships (i.e., regulation type or interaction) between small molecules and 
miRNAs/proteins. (a) Convolution-based deep learning methods extract small molecule and miRNA features. Using the convolution techniques, their initially 
concatenated feature representations are progressively fused together in their feature maps at high-order neural layers. For example, the boundaries that initially 
demarcated by different types of features blur as a result of filtering with convolution and subsampling using max pooling. (b) A typical convolutional neural network 
(CNN) showing a stack of convolutional neural layers placed with multiple filters/kernels for feature extraction over initial input image-like objects of biological 
sequence features or feature maps, which, after going through a densely connected layer, are processed into highly condensed values to be indicative of relationships 
between small molecules and miRNAs/proteins. (c) shows four different ways to connect between every two bundles of convolutional neural layers for a CNN 
(serially connected), a ResNet (residually connected), a DenseNet (densely connected), and an attention-based ResNet (connected with spatial and channel attention 
modules). (d) shows the detailed building blocks of DenseNet, ResNet, and SCAResNet. 
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1. Similarity. Apart from taking all convolutional layers as its back
bone structure, all these models culminate with a fully-connected 
layer for converting all previously learned features into a possiblity 
for indicating a binary label (e.g., upregulation or downregulation). 
These models are structured as a connection of building blocks, each 
alternating between batch normalisation, non-linear activation 
functions, and/or convolutional layers in a certain order (see 
Table 3). For example, for the pre-activation design of a building 
block, batch normalisation is placed first, which is followed by the 
ReLU actvition function and a convolutional layer. All the three types 
of models utilize average pooling or max pooling for subsampling to 
reduce the size of feature maps. 

2. Difference. The convolution-based deep learning models differ pri
marily in the way how building blocks connect to each other and the 
time required for training.  

• Building block connection. As shown in Fig. 4c, there are four ways to 
connect between convolutional layers. The raw CNNs are a stack of 
serially connected convolutional layers without applying additional 
operations [129]. In a residual neural network, every two convolu
tional layers are connected in a residual manner as a residual unit in 
which the final output of it is the sum of the output from the second 
convolutional layer and the raw input to the first convolutional layer, 
which is also called the identity shortcut (see Table 3). The invention 
of ResNets is conceived as a milestone in the development of deep 
learning algorithms, since this type of network is widely believed to 
allow for an ultrahigh speed to train an ultradeep CNN with the layer 
number equal to it. Inspired by the residual connection scheme, 
Huang et al. designed an architecture of densely connected layers, 
termed DenseNets, where convolutional blocks, each represented by 
a few serially connected convolutional layers, are connected in a way 
that the output of all convolutional blocks is the sum of the output of 
the last convolutional block and the sum of the output of all the 
preceding convolutional blocks [130]. The main difference between 
the two types of connections is that DenseNets allow for reusing the 

extracted features from all previous building blocks while ResNets 
can only use the feature information from its preceding one building 
block. The performance of DenseNets was tested to be superior to 
that of ResNets. Another study employed an attention-based mech
anism [131] to further enhance the prediction performance using 
ResNets [192]. The approach incorporated spatial and channel-wise 
attention (SCA) modules onto the initial output of every residual 
unit. These SCA modules, together with the raw input to that residual 
unit, are then added up to the input to the next residual unit. 
Essentially, the SCA modules reinforce feature extraction from spe
cific regions of feature maps by introducing two extra sets of weights 
in addition to the weights of the kernels in each residual unit. A more 
comprehensive explanation can be found in Ref. [132].  

• Time and space complexity. The development of new deep learning 
architectures for image recognition has been focused on shortening 
their training time at no cost of prediction accuracy or at even 
improved accuracy [133]. Since the parameters of those architec
tures involving convolution operations are sourced solely from fil
ters, the size and number of filters are of direct relevance to the issue 
on computational costs. Theoretically, the time complexity of 
executing a single convolution operation in a convolutional layer is 
kept unchanged if the input and the filter are set as the same in that 
layer, regardless of whatever types different deep learning archi
tectures are. However, there can be much pronounced difference 
between deep learning architectures in terms of the space 
complexity. For example, DenseNets consume much more Ram/GPU 
memory than ResNets to handle more complex concatenation oper
ations between building blocks. It is reported that compared to 
ResNets, the use of DenseNets leads to a 1.2-fold increase in the 
training time [134]. Since SCAResNets are constructed with addi
tional attention modules (i.e., additional convolution) on top of 
ResNets, they are doomed to require longer time for model training 
than ResNets. 

9.2. Weight determination using the backpropagation algorithm 

The above derivatives of CNNs are built by hinging on a basic 
structure, namely, the convolutional layer in which kernels (also called 
filters containing weights or parameters) are placed to perform con
volutional operations on image objects along horizontally and vertically. 
We next set out to mathematically formulate this process. To made it 
clear, we show in Fig. 4b that a kernel between two adjacent layers 
contains the weight matrix Υ that is required to be determined, which 
can be achieved by the backpropagation algorithm [135,136]. CNNs are 
feedforward neural networks through which information is propagated 
along the forward- and backward-pass directions [137,138], as indi
cated by upper arrows in Fig. 4b. During a forward pass, the information 
flows from a feature map in layer l to another feature map in layer l + 1 
[139], which is written as 

ul+1,d
m,n =

∑D

d=0

∑P

p=0

∑Q

q=0
γl+1,k,d

p,q × vl,d
m+p,n+q  

where D is said to be the number of channels, and P and Q are the length 
and the width of a kernel, respectively. γl+1,k,d

m,n represents the weight at 
row p and column q in the weight matrix Υ (i.e., the k th kernel) at the dth 
channel in layer l+ 1. vl,d

m+p,n+q represents the element (i.e., a small 
molecule or a miRNA feature as in the DeepsmirUD work) at row m + p 
and column n + q in the feature map V at the dth channel in layer l. ul+1,d

m,n 

represents the element at row m and column n in the output U at the dth 
channel in layer l+ 1. It can also be rephrased to its matrix form, such 
that, 

Ul+1,d =
∑D

d=0
Υl+1,k,d ⊗ Vl,d 

Table 2 
Deep learning models adopted in the DeepsmirUD work.  

Model Conv layer 
number 

BB number Conv 1 × 1 
number 

Conv 3 × 3 
number 

CNNs 3 1 (1) – 3 
ResNet18 17 8 (2, 2, 2, 

2) 
– 16 

ResNet50 19 16 (3, 4, 6, 
3) 

32 16 

DenseNet41 40 18 (6, 3, 3, 
6) 

21 18 

SCAResNet18 17 8 (2, 2, 2, 
2) 

– 16 

Note: Conv: convolutional. BB: building block. Conv 1 × 1 is used for setting a 
bottleneck architecture that can significantly reduce the number of parameters 
in filters and yet keep the dimension of feature maps unchanged [126]. Each 
number separated by a comma in brackets represent the number of basic 
building blocks in each stacked building block structure (see also Fig. 4d). 

Table 3 
Examples of convolution-based deep learning architectures.  

Architecture Structure 
within a BB 

Connection 
between BBs 

Subsampling Attention 
mechanism 

CNNs – – max pooling No 
ResNets conv layers, 

ReLU, BN 
identity 
shortcut 

max/average 
pooling 

No 

DenseNets conv layers dense 
connection 

max/average 
pooling 

No 

SCAResNets conv layers, 
ReLU, BN 

identity 
shortcut 

max/average 
pooling 

Yes 

Note: Conv: convolutional. BB: building block. 
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where ⊗ represents the convolution operation. Let J be the cost function. 
During the backward-pass process, in each epoch, the weight γl,k,d

p,q at row 
p and column q in the weight matrix Υ at the dth channel in layer l+ 1 is 
updated by the gradient descent method [140,141]. 

γl+1,k,d
p,q = γl+1,k,d

p,q − α ∂J
∂γl+1,k,d

p,q  

∂J
∂γl+1,k,d

p,q
=

∑M− P

m=0

∑N− Q

n=0

∂ul+1,k
m,n

∂γl+1,k,d
p,q

×
∂J

∂ul+1,k
m,n  

∂J
∂γl+1,k,d

p,q
=

∑M− P

m=0

∑N− Q

n=0

∂J
∂ul+1

m,n
× vl,d

m+p,n+q  

∂J
∂Υl+1,k,d =

∂J
∂Ul+1,k ⊗ Vl,d  

where M and N represent the length and the width of an input feature 
map. ∂J

∂Ul+1,k is calculated based on its counterpart in layer l+ 2, as 
demonstrated in Ref. [141]. The loss, which is the difference between 
predicted labels (i.e., 0 or 1 converted after softmax activation in 
Fig. 4b) and ground-truth labels, can be calculated after all weights are 
updated in each epoch. In summary, weights in matrix Υ for any kernel 
can be updated iteratively according to above equations and stop 
updating until the loss between two epochs changes in a meagre range. 

10. Computational prediction of small molecule inhibitors 

In this section, we introduce the computational techniques for 
discovering small molecules inhibitors of miRNA and protein targets, 
which includes RNA motif-searching prediction, association prediction 
of small molecules and miRNAs (SM-miRs), regulation type prediction of 
associated SM-miRs, and drug target interaction (DTI) prediction. Most 
of the prediction processes require the expansion of data as input by 
indicating unknown SM-miR or drug-target relationships and deep 
learning modelling needs a feature engineering process, which are 
shown in sections 10.1.1 and 10.1.2, respectively. 

10.1. Data augmentation and feature preparation 

10.1.1. The guilt-by-association rule 
Biological systems are often described as complex networks [142, 

143], in which biological entities such as small molecules, proteins, and 
genes are represented as nodes and the relationships between them are 
represented as edges. These biological networks can be further catego
rized into homogeneous and heterogeneous networks [144]. In detail, 
biological entities of one kind (e.g., drugs) are connected with one 
another into the homogeneous network, such as the drug-drug interac
tion network, while biological entities of different kinds (e.g., drugs and 
targets) are inter-connected into the heterogeneous network in which its 
two representations, bipartite [145] (e.g., the drug-target interaction 
network) and tripartite [146] (e.g., the drug-target-disease association 
network or the drug-target-response network) graphs, are very 
commonly seen in drug discovery fields [147–149]. While heteroge
neous networks usually contain a hefty volume of nodes, the relation
ships between these heterogeneous nodes can largely be unknown [146, 
150]. One approach for deducing such unknown relationships is the 
guilt-by-association (GBA) approach. It operates under the assumption 
that if biological entities with unknown function have an interaction 
profile similar to those of known function, they may function similarly 
[151–153]. This implies that if drug A is known to treat a disease, the 
GBA-deduced drugs similar to drug A may also potentially be used to 
treat this disease. This approach has been demonstrated very useful in 
drug discovery [146,150,154,155]. Often, the relationships in hetero
geneous networks are deduced by utilizing information from a medley of 

homogeneous networks [144]. For example, if drug A is linked to pro
tein X in a drug-protein interaction network, a new link between protein 
X and drug B in this network is required to be built by comparing the 
interaction profile between drug A and drug B in an external drug-drug 
interaction network where the two drugs coexist. Similarly, finding new 
protein targets of a drug in this drug-protein interaction network re
quires the information from an external protein-protein interaction 
network. The drug-drug interaction network or the protein-protein 
interaction network can be established by using those metrics that 
reflect its sequence, structural, functional properties, such as Tanimoto 
coefficients (for evaluating the chemical similarity between drugs) 
[156], sequence identity (for evaluating the sequence similarity be
tween proteins) [27], or the direct experimental evidence to support 
interactions between drugs or proteins [157]. 

10.1.2. Feature engineering for ribonucleic acids, amino acids, and 
compounds 

Computational studies of SM-miRNA interactions and DTIs often 
require a great amount of feature engineering work to characterize the 
biophysical and biochemical properties of miRNAs, proteins, and com
pounds. Compositions of miRNAs and proteins are well-suited for ma
chine learning approaches taking the entire molecular sequences as 
input, since this kind of feature can yield a fixed-length feature encoding 
vector regardless of the issue on the input sequences of varying lengths. 
The compositional features are, in short, the frequencies of k-mers, 
where k usually takes 1, 2, or 3 at better, leading to 20, 400, 8000 di
mensions for proteins for example. Tools that are powerful for gener
ating these features include propy [158], PyDPI [159], PyBioMed [160], 
and PyFeat [161] available on Python interfaces, and iFeature [162], 
iLearn [163], iLearnPlus [164], and iFeatureOmega [165] available on 
webserver interfaces. In contrast, compounds have more complex fea
tures suitable for machine learning modelling, for example, fingerprints 
for compound’s structural representations or partition coefficient (log P) 
and molar refractivity [166] for compound’s physicochemical proper
ties. There is, perhaps, no caveat to utilize diverse compound features 
for interaction prediction problems. The RDKit tool is widely applied in 
this aspect [167]. 

10.2. Computational design of lead compounds based on miRNA motifs 

Inforna is a web server that provides computational design of lead 
small molecule compounds that target RNA molecules. It works mainly 
as an algorithm-embedded, expert-curated database of RNA motif–small 
molecule relationships [21]. With only an input RNA sequence of any 
length, Inforna undergoes the two stages of prediction-based compari
sons: predicting its secondary structures and predicting the fitness of an 
RNA motif–small molecule interaction through the StARTS scoring 
scheme to produce lead compounds [22]. The concept is that if the 
predicted secondary structures of the input RNA share a high similarity 
with the RNA motif paired with a small molecule, the input RNA can be 
linked to that small molecule [168]. These deposited RNA motif–small 
molecule relationships are rendered reliable since they are derived from 
high-quality microarray-based screening experiments [169]. Several 
experiments provide proof of the accuracy of computation-led selection 
of lead compounds [170,171]. For example, Suresh et al. reported that a 
compound prioritized by Inforna to target the Dicer processing site in 
pre-miR-21 resulted in a moderate inhibitory effect in treating 
triple-negative breast cancer [172]. Later, Liu et al. showed in another 
experiment that a Inforna-designed compound successfully targeted a 
motif in the Dicer processing sites of several pri-miR-17-92 family 
members (miR-17, miR-18a, and miR-20a), with the potential to treat 
polycystic kidney disease [173]. 

10.3. Prediction of associations between small molecules and miRNAs 

A number of models have been proposed to predict the SM-miR 
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associations based on network/matrix-based inference approaches and 
machine learning techniques. As of now, we have collected from the 
literature 20 methods, of which 12 are categorized into the first cate
gory, including BNNRSMMA [174], EKRRSMMA [175], WKNKN [32], 
RWNS [176], GISMMA [177], SMANMF [178], SLHGISMMA [179], 
TLHNSMMA [180], HSSMMA [181], CLDISMMA [182], SMMART 
[183], RWR [184], and SNMFSMMA [185], and 7 belong to the latter 
group, including ELDMA [186], PSRR [187], DAESTB [188], RFSMMA 
[189], SMAJL [190], Abdelbaky et al. work [191], and Jamal et al. work 
[192]. The categorization is not restricted because some of the 
network/matrix-based methods, e.g., the SMMART work, may also 
involve an optimization process yet without a negative training dataset, 
thereby being excluded from the machine learning category. Some of the 
methods, e.g., the Abdelbaky et al. work, offer disease inference for 
outreach to showcase the application of drug discovery for a particular 
disease. The golden standard database that is most prevalently used 
among these methods is SM2miR [193], released one decade ago. In an 
effort to make a fair performance comparison, researchers have created 
two publicly available datasets of well-curated SM-miR associations, 
which most studies named Dataset 1 and Dataset 2. But the SM-miR 
association database is not only confined to SM2miR. For example, 
Jamal et al. initiated a collection of more than 300 thousand 
small-molecule modulators and/or inhibitors of miR-21 via the Pub
Chem AID 2289 by using the quantitative HTS (qHTS) assay [192]. 
Through an activity scoring scheme, these small molecules are tagged as 
active or inactive, which are then subject to data mugging and feature 
engineering and finally delivered to the Naïve Bayes [194] and random 
forest [195] learning algorithms for inferring the inhibition likelihoods 
of miRNA targets. The SM-miR association prediction field is undergoing 
rapid progress especially in the past few years, in terms of the surge in 
the number of method-based publications and the predictive ability. 
According to the performance comparison in these studies, the two 
newest methods, WKNKN and DAESTB, improved AUC values from 
0.863 to 0.986 on the two datasets. As can be seen above, this field lacks 
machine learning implementations, especially deep learning imple
mentations. The primary reason is that in order to avoid overfitting 
brought about by the label imbalance problem [196,197], machine 
learning algorithms usually seek to be trained on label ratio-balanced 
samples, but the current SM-miR databases are filled with known asso
ciation samples instead of non-association samples. What is more 
important, manually/computationally added putative negative samples 
(i.e., non-associations) may harm the performance of machine learning 
models, as discussed in Ref. [183]. 

In addition to the direct connections between drugs and miRNAs, 
some studies have incorporated functional data on drugs, such as drug 
responses, to model their relationship with miRNAs. For instance, 
Huang et al. developed the GCMDR approach to predict the associations 
between drug resistance and miRNAs [198], while Li et al. employed a 
heterogeneous network framework to predict the relationships between 
anticancer drug responses and miRNAs [199]. Unlike the SM-to-miRNA 
regulation direction, which involves a direct physical interaction be
tween them, both studies explored how drug responses are modulated 
by miRNAs. This line of research is referred to as miRNA pharmacoge
nomics, which aims to understand the mechanism of drug action on 
diseases by linking drugs, miRNAs, and genes together [200]. Specif
ically, the rationale is that the response of a drug is affected by miRNAs 
through the dysregulation of the expression of genes whose protein 
products bind to this drug. These kinds of triplets (miRNAs- > genes- >
drugs), where the drug response lies at the very last link of the chain 
reaction, indirectly link miRNAs and drugs, as indicated by Rukov et al. 
[201]. 

10.4. Prediction of regulation type of associated small molecules and 
miRNAs 

Computational approaches have advanced the discovery of drugs 

targeting miRNAs for disease treatment, following the progress made in 
predicting SM-miR associations [202]. Summarized in this review 
[203], drugs can be repositioned efficiently by an in-silico gauge of the 
presence or absence of SM-miR associations. The expression of miRNAs 
can be altered either upwards or downwards by binding with different 
small molecules, but currently, this information seems not to be seam
lessly integrated with the later computational drug discovery process 
that combines with the disease knowledge. For example, the patho
genesis of a disease is related to the upregulation of the expression of a 
miRNA. Then, we pursue whether there are small molecules that are 
able to downregulate the miRNA expression. Knowing the importance of 
the SM-miR regulation types to the development of potential small 
molecule therapeutics [54,61,204,205], we have developed two 
computational tools, DeepsmirUD and DeepdlncUD (manuscript in 
preparation), to predict the regulation types (cf. we referred to as reg
ulatory effects in the two studies) of small molecules for altering the 
expression of miRNAs and lncRNAs, respectively. It is noted that a 
SM-miR pair taken as input to DeepsmirUD has to be an 
experimentally-verified or predicted association. After then, with the 
regulation type-specific information, miRNA expression signatures 
induced by small molecules were used to couple with disease-related 
miRNAs to find potential drugs by computing connectivity scores (de
tails summarized early in this review). The data availability is of concern 
to the computational method development. We downloaded two data 
resources, SM2miR [193] and D-lnc [206], which made it possible to 
access the machine learning approaches in miRNAs and lncRNAs, 
respectively. The regulation type prediction has not reached other types 
of ncRNAs as we did not collect a hoard of interaction data that suffices 
to train a machine learning model. 

10.5. Prediction of interactions between drugs and protein targets (DTIs) 

10.5.1. Databases of DTIs 
As high-throughput experimental techniques are being increasingly 

applied for screening drug candidates that activate or inhibit protein 
targets related to a certain disease(s), there have been a growing number 
of well-established databases of DTIs with a concomitant increase in the 
number of DTIs [207], including DrugBank [84], TTD [208], Super
Target [209]. The information about other available webservers man
aging the DTI data has been well-documented in these three reviews [33, 
210,211]. We mainly focus on the analysis of the DrugBank database 
due to its pervasive applications in computational DTI studies. The data 
is compiled in DrugBank at different levels of granularity, such as 
SNP-associated drug effects, drug–drug interactions (DDIs), DTIs, etc. 
Following a major overhaul in its 5th version, DrugBank has substan
tially expanded its data content, with several categories experiencing at 
least a 1-fold increase (e.g., 600% for DDIs) and a few recent additions, 
such as drug clinical trial data. While the precise number of DTIs is not 
explicitly revealed in this version change, statistics calculated based on 
the two most recent versions (5.1.8 and 5.1.9 downloaded through the 
target sequence mark) indicate a slight increase in the number of DTIs, 
with a 3.13% increase for FDA-approved-drugs and a relatively un
changed ratio for experimental-drugs (i.e., preclinical or animal testing 
phase) (Table 4). Furthermore, there has been a noteworthy increase of 
approximately 6.46% in the number of protein targets that have been 
identified as being targeted by FDA-approved drugs. For example, there 
are 57 new drugs tagged as FDA-approved. After removing repeated 
records and those target sequences containing non-standard amino acid 
symbols, the number of DTIs decreases 0.1-fold for FDA-approved drugs 
and 0.05-fold for experimental drugs. Overall, the recent DrugBank 
database maintains ~10,000 DTIs per each category, which serve as 
adequate materials for computational modelling and analysis. Based on 
the DrugBank database, we generated a DTI dataset to train a predictor, 
Drutai, in order to determine how accurately deep neural networks can 
predict DTIs using molecular sequences alone (see Supplementary Ma
terials). Then, we use Drutai to predict DTIs when targets and drugs are 
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novel (Figs. 5 and 6, see https://aidrugud.github.io/drutai for interac
tive graphs), respectively. 

10.5.2. Computational tools for predicting DTIs 
The development of therapeutics often involves using druglike small 

molecules to bind to protein targets for inhibition or activation [212]. 
Consequently, predicting DTIs has garnered significant attention as it 
can greatly reduce the experimental efforts required to test the thera
peutic potential of small molecules [23]. Since then, improving the 
prediction of interactions between drugs and protein targets is one of the 
most promising fields in computational drug discovery [213]. With 
accumulated computational efforts, this research area has now been 
overwhelmed by numerous predictors, which are mainly categorized 
into sequence-based and structure-based predictors. There are too many 
sequence-based approaches to enumerate, such as Yu et al. work [214], 
EnsemDT [215], and DTINet [216]. Recent years have also seen a rising 
number of deep learning methods, many of which conceive novel 
schemes of taking features of DTIs as input to deep neural network ar
chitectures [217,218]. For example, the learning scheme implemented 
by DeepDTA [219] is that a small molecule and a protein are fed into two 
separate CNNs to be trained in parallel for learning their latent repre
sentations, which are then concatenated into one feature vector that is 
finally translated by conventionally a fully-connected neural network 
into the propensity of it being in interaction or non-interaction. Like
wise, other methods that adopt a similar idea include DeepAffinity 
[220], DeepPurpose [221], MDeePred [222], MINN-DTI [223], Multi
DTI [217], and HyperAttentionDTI [224]. It is worth mentioning that in 
the MDeePred, an image-like object that hierarchically represents pro
tein features through channels is used as input to a deep learning ar
chitecture, while in the MINN-DTI work, the distance map is leveraged 
to improve the representation of target proteins. Besides, the utility of 
graphs involved in the sequence-based prediction has been demon
strated by a few studies [225–227]. The crux of the plan is to represent a 
chemical structure as a graph or add relevant protein-protein or 
drug-drug interaction networks, which fit into graph convolutional 
neural networks (for review, see Ref. [228]). Comparatively, the 
structure-based prediction has yet to be popularized mainly due to the 
availability of protein structures, the additional computation on struc
tures, and the lack of the effective plans of the incorporation of protein 
structures and learning algorithms. Existing studies have given several 
examples to incorporate protein structures into the prediction DTIs, e.g., 
protein sequence annotations in domain resolution [229], graph repre
sentations of binding pockets [230], and predicted residue contact maps 
[231]. The DrugBank database [84], as an internationally trusted source 
of DTIs, is involved in a large part in the development of many methods, 
such as DrugE-Rank [232], LASSO-DNN [156], DeepDTIs [233], 
DrugR+ [234]. To illustrate the applicability of the prediction tools, 
DTIs formed with novel drugs or novel targets are curated as in Refs. 
[235–237]. 

10.6. Network analysis of the connectivity scoring scheme using drug- 
mediated miRNA profiles predicted by DeepsmirUD 

To illustrate the utility of our piloted scheme based on connectivity 
scores to reposition conventional drugs or discover new drugs, we car
ried out a drug-miRNA-disease network analysis. To this end, we 
extracted from DeepsmirUD-Web [27] the drug-mediated miRNA pro
files with absolute values of predicted regulatory effects (i.e., likelihoods 
of upregulation or downregulation types) of greater than 0.95 and the 
drug-disease associations with absolute values of connectivity scores of 
greater than 0.5. 

We present five case studies shown in Fig. 7. In ellipses 1–3, our 
network analysis successfully predicts the capability of gemcitabine 
[238], lenalidomide [239], and paclitaxel [240] to treat breast carci
noma, glioblastoma, and pancreatic cancer, respectively, as highlighted 
by the negative weights ranging between − 1 and 0. Considering its 
several side effects, such as nausea, fatigue, low blood cell counts, and 
allergic reactions [241], gemcitabine should cautiously be used for 
treating breast carcinoma. However, the network created using the 
connectivity scoring scheme is also full of wrong indications or links that 
remain unknown. Apart from a successfully predicted true link between 
piperine and osteosarcoma [242], ellipse 4 gives a false or currently 
unknown link between promethazine and osteosarcoma. Moreover, 
5-fluorouracil, as a chemotherapy medication, has a potential thera
peutic effect on colorectal cancer (CRC) [243]. However, there is the 
other way around in ellipse 5, indicated by the positively connected 
strength of 5-fluorouracil with CRC. It is noted that due to its chemo
resistance, 5-fluorouracil is suggested to be better used in conjunction 
with other natural or synthetic compounds for the co-treatment of CRC. 

11. Discussion 

This review provides an overview of miRNA biogenesis, functions, 
and disease implications, from both biological and computational per
spectives. Additionally, it presents the current advancements in 
computational strategies for the discovery of small molecule drugs of 
miRNA targets. By focusing on the small molecule-mediated targeting of 
miRNAs, this review is structured in a concise format to summarize 
experimental technologies for drug screening in tandem with compu
tational strategies. To link drugs and diseases, we begin by stressing the 
importance of associations of miRNAs with them, respectively, since 
aberrant biomolecules (say, genes, transcripts, and proteins) constitute 
the genetic and phenotypic basis that underlies the pathogenesis of 
diseases [14], and these molecules provide the structural basis that ac
counts for exerting cellular functions in somewhat of a high ratio by 
interacting with small molecule compounds [18]. In particular, compare 
to targeting proteins, targeting miRNAs with druglike small molecules is 
detailed by a large margin of this review. This is because the develop
ment of miRNA-targeted small molecule inhibitors has burgeoned a new 
field, where drugs are found through the post-transcriptional regulation 
mechanism of miRNAs rather than using protein information. This way 
is more straightforward owing to the miRNAs’ direct regulation control 
of deregulated gene expression that triggers diseases and, furthermore, 

Table 4 
Number of drugs, targets, and DTIs in DrugBank.  

Version Condition Approved Experimental 

Target Drug Interactions Target Drug Interactions 

5.1.8 raw 2694 2170 11058 2984 4549 8698 
non-repeated non-UNK 2682 2167 10738 2970 4548 8549 
PL < 3000 2484 1839 9776 2851 4481 8306 

5.1.9 raw 2868 2227 11415 2983 4551 8692 
non-repeated non-UNK 2856 2224 11083 2969 4550 8543 
PL < 3000 2650 1872 10,087 2837 4482 8280 

Note. UNK: unknown characters out of 20 standard amino acid symbols. PL: protein length. 
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the control of protein noises by targeting lowly expressed genes, as 
evidenced in an experiment on mouse embryonic stem cells [244]. 
Specifically, we elaborate the crucial role of miRNAs in developing 
cancer therapeutics from their biogenesis, functions, and experimental 
determination, eventually to the clinical applications, in that their 

aberrant expression is thought to affect cell proliferation, differentia
tion, and apoptosis. miRNA-targeted small molecule inhibitors have 
been proven to be useful to antagonize oncogenic pathways. Creating a 
solution for drug discovery is inextricably linked with experiment-led 
and computation-assisted efforts in concert. Experimentally, the 

Fig. 5. Network of DTIs formed with 
novel therapeutic targets. Each line 
represents ground-truth evidence of an 
interaction between a protein target and 
a drug. The connection strength of each 
interaction is indicated by using the 
Drutai-predicted DTI probability. Drugs 
and protein targets are represented by 
the triangle and the circle, respectively. 
The size of the triangle of a drug be
comes bigger if the drug is identified to 
connect with more targets (see http 
s://aidrugud.github.io/drutai for inter
active graphs). Human transmembrane 
proteins that are of pharmacological 
significance are annotated based on the 
GtoPdb database [260] using 9 func
tional groups: Transporter, GPCR 
(G-protein-coupled receptor), Enzyme, 
Catalytic receptor, LGIC (ligand-gated 
ion channel), VGIC (voltage-gated ion 
channel), NHR (nuclear hormone re
ceptors), Other IC (other ion channel), 
and Other protein.   
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discovery process with current technologies is accompanied by a 
time-consuming preparation of a bespoke chemical library for 
high-throughput screening, which makes drug determination chal
lenging. Rather than substituting the existing models, computational 
techniques should play a supporting yet sometimes dominant role in 
accelerating the duration of drug discovery. Overall, the clinical devel
opment of miRNA drugs is still considerably enroute. 

The state-of-the-art computational capabilities have actively been 
used in the field of drug discovery and, in fact, can be layered into 
different stages during this course, including drug design, drug indica
tion, drug repositioning, drug interactions, etc. For example, in early 
drug discovery, they can participate in the prediction of drug in
teractions or affinities with protein or miRNA targets for screening lead 

compounds, which can partly reduce the heavy workloads throughout 
HTS. Methodologically, these computational techniques can roughly be 
divided into two groups in light of whether the algorithms, themselves, 
demand a certain optimization process for generating intelligent models. 
For example, the Drutai tool demonstrated alongside this review was 
assembled as a result of a series of optimization iterations. Importantly, 
similarity-based inference techniques, many of which do not necessitate 
an optimization procedure for parameter estimation, are prevalently 
used in this field. As in Ref. [183], for example, the drug similarity is 
calculated as the weighted arithmetic mean of the clinical and structural 
similarities and the miRNA similarity is estimated based on the gene 
functional similarity and the cosine similarity. Yet another example is 
shown in Ref. [22] that the drug’s Tanimoto similarity is employed in 

Fig. 6. Network of DTIs formed with novel drugs. Each line represents ground-truth evidence of an interaction between a protein target and a drug. The connection 
strength of each interaction is indicated by using the Drutai-predicted DTI probability. Drugs and protein targets are represented by the triangle and the circle, 
respectively. The size of the triangle of a drug becomes bigger if the drug is identified to connect with more targets (see https://aidrugud.github.io/drutai for 
interactive graphs). Human transmembrane proteins that are of pharmacological significance are annotated based on the GtoPdb database [260] using 9 functional 
groups: Transporter, GPCR (G-protein-coupled receptor), Enzyme, Catalytic receptor, LGIC (ligand-gated ion channel), VGIC (voltage-gated ion channel), NHR (nuclear 
hormone receptors), Other IC (other ion channel), and Other protein. 

Fig. 7. Network analysis based on small 
molecule-miRNA, miRNA-disease, and small 
molecule-disease relationships extracted from 
DeepsmirUD-Web. The five ellipses highlight the 
predicted druglike potential of five small mole
cules (gemcitabine, lenalidomide, paclitaxel, 
piperine, and 5-fluorouracil) for treating breast 
carcinoma, glioblastoma, pancreatic cancer, os
teosarcoma, and colorectal cancer, respectively. 
The blue line indicates the druglike potential of a 
small molecule while the red line indicates the 
ability of a small molecule to be supportive of a 
disease. The blue and red dashed lines indicate 
the downregulation and upregulation type of 
small molecules on modulating miRNA expres
sion, respectively. Small molecule-disease re
lationships are linked based on connectivity 
scores [28].   
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search of lead compounds. We found that the sequence-based prediction 
of DTIs has been in the groove by achieving 85–95% AUC values, 
implying that the current volume of DTIs in the DrugBank database 
suffices to generate deep learning models to be used in practice. In 
addition, it is very interesting to watch further cases or new modalities 
for validating the efficacy of the miRNA drugs discovered based on 
DeepsmirUD-predicted regulation types, disease-miRNA relationships, 
and connectivity scores. 

Established studies have extensively benchmarked and discussed the 
biogenesis [245], structures [15], functions [42], targeting properties 
[4], silencing [246] of miRNAs, which, together, give insight into the 
pathogenesis of miRNA-regulated pathways [14]. These biological 
findings have yet to be tightly integrated with computational efforts. 
Starkly, the field of miRNAs is greatly devoid of functional annotations 
in their structures [247], due to a much more pronounced paucity of 3D 
native structures than those of proteins. The bulk of the ongoing efforts 
is being given to the design of covariation-based tools [248] for pre
diction [15]. From a limited number of case reports, we gained an un
derstanding about the mechanism of the miRNA targeting that is 
specifically and selectively carried out in structured regions, like in the 
stem-loop hairpin secondary structure. Either or both the 
prediction-assisted and the experiment-led annotations of function sites 
are assumed to play a nonnegligible role in enabling the downstream 
analysis for computation-assisted structure-based drug design and dis
covery, provided that these computationally elaborated structures can 
be put on a par with those experimentally resolved ones. In this aspect, 
with many experimentally resolved miRNA structures becoming avail
able, the information on specific functional sites (bind
ing/interaction/inhibition) derived from these structures will be 
accumulated and can be used to train cutting-edge deep learning 
models, which will supply accurate prediction-assisted annotations of 
function sites in miRNAs on a large scale. 
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[2] R. Offringa, L. Kötzner, B. Huck, K. Urbahns, The expanding role for small 
molecules in immuno-oncology, Nat. Rev. Drug Discov. 21 (2022) 821–840, 
https://doi.org/10.1038/s41573-022-00538-9. 

[3] D.S. Wishart, Y.D. Feunang, A.C. Guo, E.J. Lo, A. Marcu, J.R. Grant, T. Sajed, 
D. Johnson, C. Li, Z. Sayeeda, N. Assempour, I. Iynkkaran, Y. Liu, A. Maciejewski, 
N. Gale, A. Wilson, L. Chin, R. Cummings, D. Le, A. Pon, C. Knox, M. Wilson, 
DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids 
Res. 46 (2017) D1074–D1082, https://doi.org/10.1093/nar/gkx1037. 

[4] Z. Li, T.M. Rana, Therapeutic targeting of microRNAs: current status and future 
challenges, Nat. Rev. Drug Discov. 13 (2014) 622–638, https://doi.org/10.1038/ 
nrd4359. 

[5] A. Donlic, A.E. Hargrove, Targeting RNA in mammalian systems with small 
molecules, WIREs RNA 9 (2018) e1477, https://doi.org/10.1002/wrna.1477. 

[6] N.F. Rizvi, John P. Santa Maria Jr., A. Nahvi, J. Klappenbach, D.J. Klein, P. 
J. Curran, M.P. Richards, C. Chamberlin, P. Saradjian, J. Burchard, R. Aguilar, J. 
T. Lee, P.J. Dandliker, G.F. Smith, P. Kutchukian, E.B. Nickbarg, Targeting RNA 
with small molecules: identification of selective, RNA-binding small molecules 
occupying drug-like chemical space, SLAS Discovery 25 (2020) 384–396, https:// 
doi.org/10.1177/2472555219885373. 

[7] C.-K. Huang, S. Kafert-Kasting, T. Thum, Preclinical and clinical development of 
noncoding RNA therapeutics for cardiovascular disease, Circ. Res. 126 (2020) 
663–678, https://doi.org/10.1161/CIRCRESAHA.119.315856. 

[8] K.D. Warner, C.E. Hajdin, K.M. Weeks, Principles for targeting RNA with drug- 
like small molecules, Nat. Rev. Drug Discov. 17 (2018) 547–558, https://doi.org/ 
10.1038/nrd.2018.93. 

[9] T.L. Nero, C.J. Morton, J.K. Holien, J. Wielens, M.W. Parker, Oncogenic protein 
interfaces: small molecules, big challenges, Nat. Rev. Cancer 14 (2014) 248–262, 
https://doi.org/10.1038/nrc3690. 

[10] E. Anastasiadou, L.S. Jacob, F.J. Slack, Non-coding RNA networks in cancer, Nat. 
Rev. Cancer 18 (2018) 5–18, https://doi.org/10.1038/nrc.2017.99. 

[11] X.-D. Fu, Non-coding RNA: a new frontier in regulatory biology, Natl. Sci. Rev. 1 
(2014) 190–204, https://doi.org/10.1093/nsr/nwu008. 

[12] D. Rearick, A. Prakash, A. McSweeny, S.S. Shepard, L. Fedorova, A. Fedorov, 
Critical association of ncRNA with introns, Nucleic Acids Res. 39 (2010) 
2357–2366, https://doi.org/10.1093/nar/gkq1080. 

[13] M. Matsui, D.R. Corey, Non-coding RNAs as drug targets, Nat. Rev. Drug Discov. 
16 (2017) 167–179, https://doi.org/10.1038/nrd.2016.117. 

[14] M. Esteller, Non-coding RNAs in human disease, Nat. Rev. Genet. 12 (2011) 
861–874, https://doi.org/10.1038/nrg3074. 

[15] J.L. Childs-Disney, X. Yang, Q.M.R. Gibaut, Y. Tong, R.T. Batey, M.D. Disney, 
Targeting RNA structures with small molecules, Nat. Rev. Drug Discov. 21 (2022) 
736–762, https://doi.org/10.1038/s41573-022-00521-4. 

[16] P. Wu, Inhibition of RNA-binding proteins with small molecules, Nat. Rev. Chem 
4 (2020) 441–458, https://doi.org/10.1038/s41570-020-0201-4. 

[17] M. Winkle, S.M. El-Daly, M. Fabbri, G.A. Calin, Noncoding RNA therapeutics — 
challenges and potential solutions, Nat. Rev. Drug Discov. 20 (2021) 629–651, 
https://doi.org/10.1038/s41573-021-00219-z. 

[18] M. Cully, Small molecules targeting a tertiary RNA structure fight fungi, Nat. Rev. 
Drug Discov. 17 (2018) 864, https://doi.org/10.1038/nrd.2018.205. 
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[154] T. Doğan, E. Akhan Güzelcan, M. Baumann, A. Koyas, H. Atas, I.R. Baxendale, 
M. Martin, R. Cetin-Atalay, Protein domain-based prediction of drug/ 
compound–target interactions and experimental validation on LIM kinases, PLoS 
Comput. Biol. 17 (2021), e1009171, https://doi.org/10.1371/journal. 
pcbi.1009171. 

[155] Z.-C. Li, M.-H. Huang, W.-Q. Zhong, Z.-Q. Liu, Y. Xie, Z. Dai, X.-Y. Zou, 
Identification of drug–target interaction from interactome network with ‘guilt-by- 
association’ principle and topology features, Bioinformatics 32 (2015) 
1057–1064, https://doi.org/10.1093/bioinformatics/btv695. 

[156] J. You, R.D. McLeod, P. Hu, Predicting drug-target interaction network using deep 
learning model, Comput. Biol. Chem. 80 (2019) 90–101, https://doi.org/ 
10.1016/j.compbiolchem.2019.03.016. 

[157] M. Zitnik, M. Agrawal, J. Leskovec, Modeling polypharmacy side effects with 
graph convolutional networks, Bioinformatics 34 (2018) i457–i466, https://doi. 
org/10.1093/bioinformatics/bty294. 

[158] D.-S. Cao, Q.-S. Xu, Y.-Z. Liang, propy: a tool to generate various modes of Chou’s 
PseAAC, Bioinformatics 29 (2013) 960–962, https://doi.org/10.1093/ 
bioinformatics/btt072. 

[159] D.-S. Cao, Y.-Z. Liang, J. Yan, G.-S. Tan, Q.-S. Xu, S. Liu, PyDPI: freely available 
Python package for chemoinformatics, bioinformatics, and chemogenomics 
studies, J. Chem. Inf. Model. 53 (2013) 3086–3096, https://doi.org/10.1021/ 
ci400127q. 

[160] J. Dong, Z.-J. Yao, L. Zhang, F. Luo, Q. Lin, A.-P. Lu, A.F. Chen, D.-S. Cao, 
PyBioMed: a python library for various molecular representations of chemicals, 
proteins and DNAs and their interactions, J. Cheminf. 10 (2018) 16, https://doi. 
org/10.1186/s13321-018-0270-2. 

[161] R. Muhammod, S. Ahmed, D. Md Farid, S. Shatabda, A. Sharma, A. Dehzangi, 
PyFeat: a Python-based effective feature generation tool for DNA, RNA and 
protein sequences, Bioinformatics 35 (2019) 3831–3833, https://doi.org/ 
10.1093/bioinformatics/btz165. 

[162] Z. Chen, P. Zhao, F. Li, A. Leier, T.T. Marquez-Lago, Y. Wang, G.I. Webb, A. 
I. Smith, R.J. Daly, K.-C. Chou, J. Song, iFeature: a Python package and web 
server for features extraction and selection from protein and peptide sequences, 
Bioinformatics 34 (2018) 2499–2502, https://doi.org/10.1093/bioinformatics/ 
bty140. 

[163] Z. Chen, P. Zhao, F. Li, T.T. Marquez-Lago, A. Leier, J. Revote, Y. Zhu, D. 
R. Powell, T. Akutsu, G.I. Webb, K.-C. Chou, A.I. Smith, R.J. Daly, J. Li, J. Song, 
iLearn: an integrated platform and meta-learner for feature engineering, machine- 
learning analysis and modeling of DNA, RNA and protein sequence data, Briefings 
Bioinf. 21 (2019) 1047–1057, https://doi.org/10.1093/bib/bbz041. 

[164] Z. Chen, P. Zhao, C. Li, F. Li, D. Xiang, Y.-Z. Chen, T. Akutsu, R.J. Daly, G.I. Webb, 
Q. Zhao, L. Kurgan, J. Song, iLearnPlus: a comprehensive and automated 
machine-learning platform for nucleic acid and protein sequence analysis, 
prediction and visualization, Nucleic Acids Res. 49 (2021), https://doi.org/ 
10.1093/nar/gkab122 e60–e60. 

[165] Z. Chen, X. Liu, P. Zhao, C. Li, Y. Wang, F. Li, T. Akutsu, C. Bain, R.B. Gasser, J. Li, 
Z. Yang, X. Gao, L. Kurgan, J. Song, iFeatureOmega: an integrative platform for 
engineering, visualization and analysis of features from molecular sequences, 
structural and ligand data sets, Nucleic Acids Res. 50 (2022) W434, https://doi. 
org/10.1093/nar/gkac351. –W447. 

[166] S.A. Wildman, G.M. Crippen, Prediction of physicochemical parameters by atomic 
contributions, J. Chem. Inf. Comput. Sci. 39 (1999) 868–873, https://doi.org/ 
10.1021/ci990307l. 

[167] A.P. Bento, A. Hersey, E. Félix, G. Landrum, A. Gaulton, F. Atkinson, L.J. Bellis, 
M. de Veij, A.R. Leach, An open source chemical structure curation pipeline using 
RDKit, J. Cheminf. 12 (2020) 51, https://doi.org/10.1186/s13321-020-00456-1. 

[168] M.D. Disney, A.J. Angelbello, Rational design of small molecules targeting 
oncogenic noncoding RNAs from sequence, Acc. Chem. Res. 49 (2016) 
2698–2704, https://doi.org/10.1021/acs.accounts.6b00326. 

[169] M.G. Costales, J.L. Childs-Disney, H.S. Haniff, M.D. Disney, How we think about 
targeting RNA with small molecules, J. Med. Chem. 63 (2020) 8880–8900, 
https://doi.org/10.1021/acs.jmedchem.9b01927. 

[170] R. Fan, C. Xiao, X. Wan, W. Cha, Y. Miao, Y. Zhou, C. Qin, T. Cui, F. Su, X. Shan, 
Small molecules with big roles in microRNA chemical biology and microRNA- 
targeted therapeutics, RNA Biol. 16 (2019) 707–718, https://doi.org/10.1080/ 
15476286.2019.1593094. 

[171] S.P. Velagapudi, M.D. Cameron, C.L. Haga, L.H. Rosenberg, M. Lafitte, D. 
R. Duckett, D.G. Phinney, M.D. Disney, Design of a small molecule against an 
oncogenic noncoding RNA, Proc. Natl. Acad. Sci. USA 113 (2016) 5898–5903, 
https://doi.org/10.1073/pnas.1523975113. 

[172] B.M. Suresh, W. Li, P. Zhang, K.W. Wang, I. Yildirim, C.G. Parker, M.D. Disney, 
A general fragment-based approach to identify and optimize bioactive ligands 

J. Sun et al.                                                                                                                                                                                                                                      

https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
http://refhub.elsevier.com/S0223-5234(23)00466-X/sref128
http://refhub.elsevier.com/S0223-5234(23)00466-X/sref128
http://refhub.elsevier.com/S0223-5234(23)00466-X/sref128
https://doi.org/10.1016/B978-0-12-824349-7.00013-X
https://doi.org/10.1016/B978-0-12-824349-7.00013-X
https://doi.org/10.1109/TPAMI.2021.3117837
https://doi.org/10.1109/TPAMI.2021.3117837
https://doi.org/10.48550/ARXIV.1409.0473
https://doi.org/10.1109/CVPR.2017.667
https://doi.org/10.1016/j.procs.2022.12.023
https://doi.org/10.1109/WACV48630.2021.00359
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1016/B978-0-12-818803-3.00030-1
https://doi.org/10.1016/B978-0-12-816176-0.00025-9
https://doi.org/10.1016/B978-0-12-817358-9.00010-X
https://doi.org/10.1016/B978-0-12-817358-9.00010-X
https://doi.org/10.1109/MSP.2010.939038
https://doi.org/10.1016/B978-0-32-385787-1.00008-7
https://doi.org/10.1093/femsre/fux042
https://doi.org/10.1093/femsre/fux042
https://doi.org/10.1371/journal.pone.0028708
https://doi.org/10.1038/s41467-017-00680-8
https://doi.org/10.1093/bioinformatics/btq176
https://doi.org/10.1093/bioinformatics/btx160
https://doi.org/10.1093/bioinformatics/btz600
https://doi.org/10.1093/bioinformatics/btz600
https://doi.org/10.1093/bioinformatics/btac383
https://doi.org/10.1186/1752-0509-7-S5-S6
https://doi.org/10.1093/bioinformatics/btx731
https://doi.org/10.1093/bioinformatics/btx731
https://doi.org/10.1038/nmeth.2728
https://doi.org/10.1038/35001165
https://doi.org/10.1038/35001165
https://doi.org/10.1371/journal.pbio.1000096
https://doi.org/10.1371/journal.pcbi.1009171
https://doi.org/10.1371/journal.pcbi.1009171
https://doi.org/10.1093/bioinformatics/btv695
https://doi.org/10.1016/j.compbiolchem.2019.03.016
https://doi.org/10.1016/j.compbiolchem.2019.03.016
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/btt072
https://doi.org/10.1093/bioinformatics/btt072
https://doi.org/10.1021/ci400127q
https://doi.org/10.1021/ci400127q
https://doi.org/10.1186/s13321-018-0270-2
https://doi.org/10.1186/s13321-018-0270-2
https://doi.org/10.1093/bioinformatics/btz165
https://doi.org/10.1093/bioinformatics/btz165
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1093/bib/bbz041
https://doi.org/10.1093/nar/gkab122
https://doi.org/10.1093/nar/gkab122
https://doi.org/10.1093/nar/gkac351
https://doi.org/10.1093/nar/gkac351
https://doi.org/10.1021/ci990307l
https://doi.org/10.1021/ci990307l
https://doi.org/10.1186/s13321-020-00456-1
https://doi.org/10.1021/acs.accounts.6b00326
https://doi.org/10.1021/acs.jmedchem.9b01927
https://doi.org/10.1080/15476286.2019.1593094
https://doi.org/10.1080/15476286.2019.1593094
https://doi.org/10.1073/pnas.1523975113


European Journal of Medicinal Chemistry 257 (2023) 115500

19

targeting RNA, Proc. Natl. Acad. Sci. USA 117 (2020) 33197–33203, https://doi. 
org/10.1073/pnas.2012217117. 

[173] X. Liu, H.S. Haniff, J.L. Childs-Disney, A. Shuster, H. Aikawa, A. Adibekian, M. 
D. Disney, Targeted degradation of the oncogenic MicroRNA 17-92 cluster by 
structure-targeting ligands, J. Am. Chem. Soc. 142 (2020) 6970–6982, https:// 
doi.org/10.1021/jacs.9b13159. 

[174] X. Chen, C. Zhou, C.-C. Wang, Y. Zhao, Predicting potential small 
molecule–miRNA associations based on bounded nuclear norm regularization, 
Briefings Bioinf. 22 (2021), https://doi.org/10.1093/bib/bbab328. 

[175] C.-C. Wang, C.-C. Zhu, X. Chen, Ensemble of kernel ridge regression-based small 
molecule–miRNA association prediction in human disease, Briefings Bioinf. 23 
(2021), https://doi.org/10.1093/bib/bbab431. 

[176] F. Liu, L. Peng, G. Tian, J. Yang, H. Chen, Q. Hu, X. Liu, L. Zhou, Identifying small 
molecule-miRNA associations based on credible negative sample selection and 
random walk, Front. Bioeng. Biotechnol. 8 (2020), https://doi.org/10.3389/ 
fbioe.2020.00131. 

[177] N.-N. Guan, Y.-Z. Sun, Z. Ming, J.-Q. Li, X. Chen, Prediction of potential small 
molecule-associated MicroRNAs using graphlet interaction, Front. Pharmacol. 9 
(2018), https://doi.org/10.3389/fphar.2018.01152. 

[178] J. Luo, C. Shen, Z. Lai, J. Cai, P. Ding, Incorporating clinical, chemical and 
biological information for predicting small molecule-microRNA associations 
based on non-negative matrix factorization, IEEE ACM Trans. Comput. Biol. 
Bioinf 18 (2021) 2535–2545, https://doi.org/10.1109/TCBB.2020.2975780. 

[179] J. Yin, X. Chen, C.-C. Wang, Y. Zhao, Y.-Z. Sun, Prediction of small 
molecule–MicroRNA associations by sparse learning and heterogeneous graph 
inference, Mol. Pharm. 16 (2019) 3157–3166, https://doi.org/10.1021/acs. 
molpharmaceut.9b00384. 

[180] J. Qu, X. Chen, Y.-Z. Sun, J.-Q. Li, Z. Ming, Inferring potential small 
molecule–miRNA association based on triple layer heterogeneous network, 
J. Cheminf. 10 (2018) 30, https://doi.org/10.1186/s13321-018-0284-9. 

[181] J. Qu, X. Chen, Y.-Z. Sun, Y. Zhao, S.-B. Cai, Z. Ming, Z.-H. You, J.-Q. Li, Silico 
prediction of small molecule-miRNA associations based on the HeteSim 
algorithm, Mol. Ther. Nucleic Acids 14 (2019) 274–286, https://doi.org/ 
10.1016/j.omtn.2018.12.002. 

[182] C.-C. Wang, X. Chen, A unified framework for the prediction of small 
molecule–MicroRNA association based on cross-layer dependency inference on 
multilayered networks, J. Chem. Inf. Model. 59 (2019) 5281–5293, https://doi. 
org/10.1021/acs.jcim.9b00667. 

[183] C. Shen, J. Luo, W. Ouyang, P. Ding, H. Wu, Identification of small 
molecule–miRNA associations with graph regularization techniques in 
heterogeneous networks, J. Chem. Inf. Model. 60 (2020) 6709–6721, https://doi. 
org/10.1021/acs.jcim.0c00975. 

[184] Y. Lv, S. Wang, F. Meng, L. Yang, Z. Wang, J. Wang, X. Chen, W. Jiang, Y. Li, X. Li, 
Identifying novel associations between small molecules and miRNAs based on 
integrated molecular networks, Bioinformatics 31 (2015) 3638–3644, https:// 
doi.org/10.1093/bioinformatics/btv417. 

[185] Y. Zhao, X. Chen, J. Yin, J. Qu, SNMFSMMA: using symmetric nonnegative matrix 
factorization and Kronecker regularized least squares to predict potential small 
molecule-microRNA association, RNA Biol. 17 (2020) 281–291, https://doi.org/ 
10.1080/15476286.2019.1694732. 

[186] K. Deepthi, A.S. Jereesh, An ensemble approach based on multi-source 
information to predict drug-MiRNA associations via convolutional neural 
networks, IEEE Access 9 (2021) 38331–38341, https://doi.org/10.1109/ 
ACCESS.2021.3063885. 

[187] F. Yu, B. Li, J. Sun, J. Qi, R.L. de Wilde, L.A. la Roche, C. Li, S. Ahmad, W. Shi, 
X. Li, Z. Chen, PSRR: a web server for predicting the regulation of miRNAs 
expression by small molecules, Front. Mol. Biosci. 9 (2022), https://doi.org/ 
10.3389/fmolb.2022.817294. 

[188] L. Peng, Y. Tu, L. Huang, Y. Li, X. Fu, X. Chen, DAESTB: inferring associations of 
small molecule–miRNA via a scalable tree boosting model based on deep 
autoencoder, Briefings Bioinf. 23 (2022), https://doi.org/10.1093/bib/bbac478. 

[189] C.-C. Wang, X. Chen, J. Qu, Y.-Z. Sun, J.-Q. Li, RFSMMA: a new computational 
model to identify and prioritize potential small molecule–MiRNA associations, 
J. Chem. Inf. Model. 59 (2019) 1668–1679, https://doi.org/10.1021/acs. 
jcim.9b00129. 

[190] C. Shen, J. Luo, Z. Lai, P. Ding, Multiview joint learning-based method for 
identifying small-molecule-associated MiRNAs by integrating pharmacological, 
genomics, and network knowledge, J. Chem. Inf. Model. 60 (2020) 4085–4097, 
https://doi.org/10.1021/acs.jcim.0c00244. 

[191] I. Abdelbaky, H. Tayara, K.T. Chong, Identification of miRNA-small molecule 
associations by continuous feature representation using auto-encoders, 
Pharmaceutics 14 (2022), https://doi.org/10.3390/pharmaceutics14010003. 

[192] S. Jamal, V. Periwal, O. Consortium, V. Scaria, Computational analysis and 
predictive modeling of small molecule modulators of microRNA, J. Cheminf. 4 
(2012) 16, https://doi.org/10.1186/1758-2946-4-16. 

[193] X. Liu, S. Wang, F. Meng, J. Wang, Y. Zhang, E. Dai, X. Yu, X. Li, W. Jiang, 
SM2miR: a database of the experimentally validated small molecules’ effects on 
microRNA expression, Bioinformatics 29 (2012) 409–411, https://doi.org/ 
10.1093/bioinformatics/bts698. 

[194] W. Lou, X. Wang, F. Chen, Y. Chen, B. Jiang, H. Zhang, Sequence based prediction 
of DNA-binding proteins based on hybrid feature selection using random forest 
and Gaussian Naïve Bayes, PLoS One 9 (2014) e86703, https://doi.org/10.1371/ 
journal.pone.0086703. 

[195] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/ 
10.1023/A:1010933404324. 

[196] C. Huang, Y. Li, C.C. Loy, X. Tang, Learning deep representation for imbalanced 
classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 
CVPR), 2016, pp. 5375–5384, https://doi.org/10.1109/CVPR.2016.580, 2016. 

[197] F. Jia, Y. Lei, N. Lu, S. Xing, Deep normalized convolutional neural network for 
imbalanced fault classification of machinery and its understanding via 
visualization, Mech. Syst. Signal Process. 110 (2018) 349–367, https://doi.org/ 
10.1016/j.ymssp.2018.03.025. 

[198] Y. Huang, P. Hu, K.C.C. Chan, Z.-H. You, Graph convolution for predicting 
associations between miRNA and drug resistance, Bioinformatics 36 (2019) 
851–858, https://doi.org/10.1093/bioinformatics/btz621. 

[199] J. Li, K. Lei, Z. Wu, W. Li, G. Liu, J. Liu, F. Cheng, Y. Tang, Network-based 
identification of microRNAs as potential pharmacogenomic biomarkers for 
anticancer drugs, Oncotarget 7 (2016) 45584–45596, https://doi.org/10.18632/ 
oncotarget.10052. 

[200] J.L. Rukov, N. Shomron, MicroRNA pharmacogenomics: post-transcriptional 
regulation of drug response, Trends Mol. Med. 17 (2011) 412–423, https://doi. 
org/10.1016/j.molmed.2011.04.003. 

[201] J.L. Rukov, R. Wilentzik, I. Jaffe, J. Vinther, N. Shomron, Pharmaco-miR: linking 
microRNAs and drug effects, Briefings Bioinf. 15 (2013) 648–659, https://doi. 
org/10.1093/bib/bbs082. 

[202] X. Chen, N.-N. Guan, Y.-Z. Sun, J.-Q. Li, J. Qu, MicroRNA-small molecule 
association identification: from experimental results to computational models, 
Briefings Bioinf. 21 (2018) 47–61, https://doi.org/10.1093/bib/bby098. 

[203] X. Zhou, E. Dai, Q. Song, X. Ma, Q. Meng, Y. Jiang, W. Jiang, In silico drug 
repositioning based on drug-miRNA associations, Briefings Bioinf. 21 (2019) 
498–510, https://doi.org/10.1093/bib/bbz012. 

[204] P. del C. Monroig, L. Chen, S. Zhang, G.A. Calin, Small molecule compounds 
targeting miRNAs for cancer therapy, Adv. Drug Deliv. Rev. 81 (2015) 104–116, 
https://doi.org/10.1016/j.addr.2014.09.002. 

[205] R. Fan, C. Xiao, X. Wan, W. Cha, Y. Miao, Y. Zhou, C. Qin, T. Cui, F. Su, X. Shan, 
Small molecules with big roles in microRNA chemical biology and microRNA- 
targeted therapeutics, RNA Biol. 16 (2019) 707–718, https://doi.org/10.1080/ 
15476286.2019.1593094. 

[206] W. Jiang, Y. Qu, Q. Yang, X. Ma, Q. Meng, J. Xu, X. Liu, S. Wang, D-lnc: a 
comprehensive database and analytical platform to dissect the modification of 
drugs on lncRNA expression, RNA Biol. 16 (2019) 1586–1591, https://doi.org/ 
10.1080/15476286.2019.1649584. 

[207] K. Sachdev, M.K. Gupta, A comprehensive review of feature based methods for 
drug target interaction prediction, J. Biomed. Inf. 93 (2019), 103159, https://doi. 
org/10.1016/j.jbi.2019.103159. 

[208] Y. Wang, S. Zhang, F. Li, Y. Zhou, Y. Zhang, Z. Wang, R. Zhang, J. Zhu, Y. Ren, 
Y. Tan, C. Qin, Y. Li, X. Li, Y. Chen, F. Zhu, Therapeutic target database 2020: 
enriched resource for facilitating research and early development of targeted 
therapeutics, Nucleic Acids Res. 48 (2019), https://doi.org/10.1093/nar/gkz981. 
D1031–D1041. 

[209] N. Hecker, J. Ahmed, J. von Eichborn, M. Dunkel, K. Macha, A. Eckert, M. 
K. Gilson, P.E. Bourne, R. Preissner, SuperTarget goes quantitative: update on 
drug–target interactions, Nucleic Acids Res. 40 (2011), https://doi.org/10.1093/ 
nar/gkr912. D1113–D1117. 

[210] X. Chen, C.C. Yan, X. Zhang, X. Zhang, F. Dai, J. Yin, Y. Zhang, Drug–target 
interaction prediction: databases, web servers and computational models, 
Briefings Bioinf. 17 (2015) 696–712, https://doi.org/10.1093/bib/bbv066. 

[211] S.S. MacKinnon, S.A. Madani Tonekaboni, A. Windemuth, Proteome-scale drug- 
target interaction predictions: approaches and applications, Curr Protoc 1 (2021), 
e302, https://doi.org/10.1002/cpz1.302. 

[212] J.P. Hughes, S. Rees, S.B. Kalindjian, K.L. Philpott, Principles of early drug 
discovery, Br. J. Pharmacol. 162 (2011) 1239–1249, https://doi.org/10.1111/ 
j.1476-5381.2010.01127.x. 

[213] I Lee, J. Keum, H. Namee, DeepConv-Dti: Prediction of drug-target interactions 
via deep learning with convolution on protein sequences, PLoS Comput. Biol. 15 
(2019) e1007129, https://doi.org/10.1371/journal.pcbi.1007129. 

[214] H. Yu, J. Chen, X. Xu, Y. Li, H. Zhao, Y. Fang, X. Li, W. Zhou, W. Wang, Y. Wang, 
A systematic prediction of multiple drug-target interactions from chemical, 
genomic, and pharmacological data, PLoS One 7 (2012), https://doi.org/ 
10.1371/journal.pone.0037608 e37608. 

[215] A. Ezzat, M. Wu, X.-L. Li, C.-K. Kwoh, Drug-target interaction prediction using 
ensemble learning and dimensionality reduction, Methods 129 (2017) 81–88, 
https://doi.org/10.1016/j.ymeth.2017.05.016. 

[216] Y. Luo, X. Zhao, J. Zhou, J. Yang, Y. Zhang, W. Kuang, J. Peng, L. Chen, J. Zeng, 
A network integration approach for drug-target interaction prediction and 
computational drug repositioning from heterogeneous information, Nat. 
Commun. 8 (2017) 573, https://doi.org/10.1038/s41467-017-00680-8. 

[217] D. Zhou, Z. Xu, W. Li, X. Xie, S. Peng, MultiDTI: drug–target interaction prediction 
based on multi-modal representation learning to bridge the gap between new 
chemical entities and known heterogeneous network, Bioinformatics 37 (2021) 
4485–4492, https://doi.org/10.1093/bioinformatics/btab473. 

[218] K. Huang, C. Xiao, L.M. Glass, J. Sun, MolTrans: molecular Interaction 
Transformer for drug–target interaction prediction, Bioinformatics 37 (2020) 
830–836, https://doi.org/10.1093/bioinformatics/btaa880. 
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