177 research outputs found

    Transiting Exoplanet Survey Satellite (TESS) Flight Dynamics Commissioning Results and Experiences

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) will perform the first-ever spaceborne all-sky exoplanet transit survey and is the first primary-mission application of a lunar-resonant orbit. Launched on April 18, 2018, TESS completed a two-month commissioning phase consisting of three phasing loops followed by a lunar flyby and a final maneuver to achieve resonance. During the mission orbit, no further station-keeping maneuvers are planned or required. NASA Goddard Space Flight Center is performing flight dynamics operations for the mission. This paper covers the design, implementation, and results from TESS commissioning, including the projected performance of the final mission orbit

    Transiting Exoplanet Survey Satellite (TESS) Flight Dynamics Commissioning Results and Experiences

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) will perform the first-ever spaceborne all-sky exoplanet transit survey and is the first primary-mission application of a lunar-resonant orbit. Launched on April 18, 2018, TESS completed a two-month commissioning phase consisting of three phasing loops followed by a lunar flyby and a final maneuver to achieve resonance. During the mission orbit, no further station-keeping maneuvers are planned or required. NASA Goddard Space Flight Center is performing flight dynamics operations for the mission. This paper covers the design, implementation, and results from TESS commissioning, including the projected performance of the final mission orbit

    The subtropical nutrient spiral

    Get PDF
    Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 17 (2003): 1110, doi:10.1029/2003GB002085.We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m−2 yr−1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call “the nutrient spiral,” as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.This work was supported by grants from the National Science Foundation (OCE-0221247) and NSF/ONR NOPP (N000140210370)

    Global Law as Intercontextuality and as Interlegality

    Get PDF
    Since the 1990s the effects of globalization on law and legal developments has been a central topic of scholarly debate. To date, the debate is however marked by three substantial deficiencies which this chapter seeks to remedy through a reconceptualization of global law as a law of inter-contextuality expressed through inter-legality and materialized through a particular body of legal norms which can be characterized as connectivity norms. The first deficiency is a historical and empirical one. Both critics as well as advocates of ‘non-state law’ share the assumption that ‘law beyond the state’ and related legal norms have gained in centrality when compared with previous historical times. While global law, including both public and private global governance law as well as regional occurrences such as EU law, has undergone profound transformations since the structural transformations which followed the de-colonialization processes of the mid-twentieth century, we do not have more global law relatively to other types of law today than in previous historical times. The second deficiency is a methodological one. The vast majority of scholarship on global law is either of an analytical nature, drawing on insights from philosophy, or empirically observing the existence of global law and the degree of compliance with global legal norms at a given moment in time. While both approaches bring something to the table they remain static approaches incapable of explaining and evaluating the transformation of global law over time. The third deficiency is a conceptual-theoretical one. In most instances, global law is understood as a unitary law producing singular legal norms with a planetary reach, or, alternatively, a radical pluralist perspective is adopted dismissing the existence of singular global norms. Both of these approaches however misapprehend the structural characteristics, function and societal effects of global law. Instead a third positon between unitary and radical pluralist perspectives can be adopted through an understanding of global law and its related legal norms as a de-centred kind of inter-contextual law characterised by inter-legality

    Impact of Oxygen Transport Properties on the Kinetic Modeling of Polypropylene Thermal Oxidation. II. Effect of Oxygen Diffusivity

    Get PDF
    The kinetic model, established in a previous article (François-Heude et al., J. Appl. Polym. Sci., in press) to predict the homogeneous oxidation in iPP films typically thinner than 100 µm, is now extended to simulate the oxidation profiles in thicker plates by coupling the oxygen diffusion and its consumption by the chemical reactions. In this perspective, oxygen transport properties (namely oxygen solubility, diffusivity, and permeability) are measured by permeametry on a reference iPP. These values are compared with an exhaustive compilation of literature data to evaluate their variability among the whole iPP family, which one has been reasonably ascribed to initial differences in polymer morphology, but also to evaluate their consistency, especially their temperature dependence between 20 and 140°C. Failing to simulate oxidation profiles, the kinetic model is then used as an inverse resolution method for estimating more satisfactory values of oxygen transport properties. It is thus evidenced that the crystallinity changes induced by thermal oxidation largely explains the dramatic decrease in oxygen penetration toward the sample core just after the induction period. A strategy aimed for introducing the relationship between the polymer crystalline morphology and oxygen transport properties into the kinetic model is given in the graphical abstract, although the effect of polymer polarity remains to be established prior to this implementation

    Mechanisms controlling dissolved iron distribution in the North Pacific : a model study

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): G03005, doi:10.1029/2010JG001541.Mechanisms controlling the dissolved iron distribution in the North Pacific are investigated using the Biogeochemical Elemental Cycling (BEC) model with a resolution of approximately 1° in latitude and longitude and 60 vertical levels. The model is able to reproduce the general distribution of iron as revealed in available field data: surface concentrations are generally below 0.2 nM; concentrations increase with depth; and values in the lower pycnocline are especially high in the northwestern Pacific and off the coast of California. Sensitivity experiments changing scavenging regimes and external iron sources indicate that lateral transport of sedimentary iron from continental margins into the open ocean causes the high concentrations in these regions. This offshore penetration only appears under a scavenging regime where iron has a relatively long residence time at high concentrations, namely, the order of years. Sedimentary iron is intensively supplied around continental margins, resulting in locally high concentrations; the residence time with respect to scavenging determines the horizontal scale of elevated iron concentrations. Budget analysis for iron reveals the processes by which sedimentary iron is transported to the open ocean. Horizontal mixing transports sedimentary iron from the boundary into alongshore currents, which then carry high iron concentrations into the open ocean in regions where the alongshore currents separate from the coast, most prominently in the northwestern Pacific and off of California.This work was supported by the U.S. National Science Foundation (EF‐0424599)

    Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii Ocean Time-series and Bermuda Atlantic Time-series Study sites

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 117 (2012): C05012, doi:10.1029/2010JC006856.The triple oxygen isotopic composition of dissolved oxygen (17Δ) is a promising tracer of gross oxygen productivity (P) in the ocean. Recent studies have inferred a high and variable ratio of P to 14C net primary productivity (12–24 h incubations) (e.g., P:NPP(14C) of 5–10) using the 17Δ tracer method, which implies a very low efficiency of phytoplankton growth rates relative to gross photosynthetic rates. We added oxygen isotopes to a one-dimensional mixed layer model to assess the role of physical dynamics in potentially biasing estimates of P using the 17Δ tracer method at the Bermuda Atlantic Time-series Study (BATS) and Hawaii Ocean Time-series (HOT). Model results were compared to multiyear observations at each site. Entrainment of high 17Δ thermocline water into the mixed layer was the largest source of error in estimating P from mixed layer 17Δ. At both BATS and HOT, entrainment bias was significant throughout the year and resulted in an annually averaged overestimate of mixed layer P of 60 to 80%. When the entrainment bias is corrected for, P calculated from observed 17Δ and 14C productivity incubations results in a gross:net productivity ratio of 2.6 (+0.9 −0.8) at BATS. At HOT a gross:net ratio decreasing linearly from 3.0 (+1.0 −0.8) at the surface to 1.4 (+0.6 −0.6) at depth best reproduced observations. In the seasonal thermocline at BATS, however, a significantly higher gross:net ratio or large lateral fluxes of 17Δ must be invoked to explain 17Δ field observations.We acknowledge support from Center for Microbial Oceanography Research and Education (CMORE) (NSF EF-0424599) and NOAA Global Carbon Program (NA 100AR4310093). BL thanks the USA-Israel Binational Science Foundation for supporting his project at BATS.2012-11-0

    Vilhelm Lundstedt’s ‘Legal Machinery’ and the Demise of Juristic Practice

    Get PDF
    This article aims to contribute to the academic debate on the general crisis faced by law schools and the legal professions by discussing why juristic practice is a matter of experience rather than knowledge. Through a critical contextualisation of Vilhelm Lundstedt’s thought under processes of globalisation and transnationalism, it is argued that the demise of the jurist’s function is related to law’s scientification as brought about by the metaphysical construction of reality. The suggested roadmap will in turn reveal that the current voiding of juristic practice and its teaching is part of the crisis regarding what makes us human

    Global report on preterm birth and stillbirth (2 of 7): discovery science

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal and abnormal processes of pregnancy and childbirth are poorly understood. This second article in a global report explains what is known about the etiologies of preterm births and stillbirths and identifies critical gaps in knowledge. Two important concepts emerge: the continuum of pregnancy, beginning at implantation and ending with uterine involution following birth; and the multifactorial etiologies of preterm birth and stillbirth. Improved tools and data will enable discovery scientists to identify causal pathways and cost-effective interventions.</p> <p>Pregnancy and parturition continuum</p> <p>The biological process of pregnancy and childbirth begins with implantation and, after birth, ends with the return of the uterus to its previous state. The majority of pregnancy is characterized by rapid uterine and fetal growth without contractions. Yet most research has addressed only uterine stimulation (labor) that accounts for <0.5% of pregnancy.</p> <p>Etiologies</p> <p>The etiologies of preterm birth and stillbirth differ by gestational age, genetics, and environmental factors. Approximately 30% of all preterm births are indicated for either maternal or fetal complications, such as maternal illness or fetal growth restriction. Commonly recognized pathways leading to preterm birth occur most often during the gestational ages indicated: (1) inflammation caused by infection (22-32 weeks); (2) decidual hemorrhage caused by uteroplacental thrombosis (early or late preterm birth); (3) stress (32-36 weeks); and (4) uterine overdistention, often caused by multiple fetuses (32-36 weeks). Other contributors include cervical insufficiency, smoking, and systemic infections. Many stillbirths have similar causes and mechanisms. About two-thirds of late fetal deaths occur during the antepartum period; the other third occur during childbirth. Intrapartum asphyxia is a leading cause of stillbirths in low- and middle-income countries.</p> <p>Recommendations</p> <p>Utilizing new systems biology tools, opportunities now exist for researchers to investigate various pathways important to normal and abnormal pregnancies. Improved access to quality data and biological specimens are critical to advancing discovery science. Phenotypes, standardized definitions, and uniform criteria for assessing preterm birth and stillbirth outcomes are other immediate research needs.</p> <p>Conclusion</p> <p>Preterm birth and stillbirth have multifactorial etiologies. More resources must be directed toward accelerating our understanding of these complex processes, and identifying upstream and cost-effective solutions that will improve these pregnancy outcomes.</p

    Judging Inter-Legality

    Get PDF
    Peer reviewe
    corecore