955 research outputs found

    Solution of a Model for the Oceanic Pycnocline Depth: Scaling of Overturning Strength and Meridional Pressure Difference

    Full text link
    We present an analysis of the model by Gnanadesikan [1999] for the pycnocline depth in the ocean. An analytic solution for the overturning strength as a function of the meridional pressure difference is derived and used to discuss their mutual scaling. We show that scaling occurs only in two unphysical regimes of the model. In the absence of the Southern Ocean (SO) processes, i.e. for a northern overturning cell, the volume transport is proportional to the square root of the pressure difference. Linear scaling is seen when the overturning is restricted entirely to the SO, i.e. when no northern downwelling exists. For comparison, we present simulations with the coupled climate model CLIMBER-3α\alpha which show linear scaling over a large regime of pressure differences in the North Atlantic (NA). We conclude that the pycnocline model is not able to reproduce the linear scaling between its two central variables, pressure and volume transport.Comment: Geophysical Research Letters (2004), accepted. See also http://www.pik-potsdam.de/~ander

    Coda/Onset Asymmetries in Dhivehi

    Get PDF
    The asymmetry between codas and onsets in neutralizations and assimilations is a challenge for classic OT , which operates only on output constraints and does not distinguish between VC1C1V and VC2C2V as the output of /VC1C2V/. Serial forms of OT capture the asymmetry by making coda neutralization a prerequisite for assimilation. Dhivehi offers evidence that neutralization does in fact precede assimilation, as neutralization of coronal /t/ leaves a coronal glide ‘trace’ that persists after assimilation of a coda to a following onset. However, onsets assimilate to preceding codas in certain morphological environments when the coda is retroflex and the onset is dental. This kind of assimilation cannot be captured by serially ordered neutralization and assimilation, and the analysis requires the use of either morphologically targeted constraints or the reranking of constraints between morphological levels.

    Robust correlators

    Full text link
    Radio frequency interference (RFI) already limits the sensitivity of existing radio telescopes in several frequency bands and may prove to be an even greater obstacle for future generation instruments to overcome. I aim to create a structure of radio astronomy correlators which will be statistically stable (robust) in the presence of interference. A statistical analysis of the mixture of system noise + signal noise + RFI is proposed here which could be incorporated into the block diagram of a correlator. Order and rank statistics are especially useful when calculated in both temporal and frequency domains. Several new algorithms of robust correlators are proposed and investigated here. Computer simulations and processing of real data demonstrate the efficacy of the proposed algorithms

    Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Get PDF
    © The Authors, 2011. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 8 (2011): 505-513, doi:10.5194/bg-8-505-2011.The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.I. Marinov was supported by NOAA grant NA10OAR4310092

    How does ocean ventilation change under global warming?

    Get PDF
    International audienceSince the upper ocean takes up much of the heat added to the earth system by anthropogenic global warming, one would expect that global warming would lead to an increase in stratification and a decrease in the ventilation of the ocean interior. However, multiple simulations in global coupled climate models using an ideal age tracer which is set to zero in the mixed layer and ages at 1 yr/yr outside this layer show that the intermediate depths in the low latitudes, Northwest Atlantic, and parts of the Arctic Ocean become younger under global warming. This paper reconciles these apparently contradictory trends, showing that the decreases result from changes in the relative contributions of old deep waters and younger surface waters. Implications for the tropical oxygen minimum zones, which play a critical role in global biogeochemical cycling are considered in detail

    Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3007, doi:10.1029/2007GB002958.We use both theory and ocean biogeochemistry models to examine the role of the soft-tissue biological pump in controlling atmospheric CO2. We demonstrate that atmospheric CO2 can be simply related to the amount of inorganic carbon stored in the ocean by the soft-tissue pump, which we term (OCS soft ). OCS soft is linearly related to the inventory of remineralized nutrient, which in turn is just the total nutrient inventory minus the preformed nutrient inventory. In a system where total nutrient is conserved, atmospheric CO2 can thus be simply related to the global inventory of preformed nutrient. Previous model simulations have explored how changes in the surface concentration of nutrients in deepwater formation regions change the global preformed nutrient inventory. We show that changes in physical forcing such as winds, vertical mixing, and lateral mixing can shift the balance of deepwater formation between the North Atlantic (where preformed nutrients are low) and the Southern Ocean (where they are high). Such changes in physical forcing can thus drive large changes in atmospheric CO2, even with minimal changes in surface nutrient concentration. If Southern Ocean deepwater formation strengthens, the preformed nutrient inventory and thus atmospheric CO2 increase. An important consequence of these new insights is that the relationship between surface nutrient concentrations, biological export production, and atmospheric CO2 is more complex than previously predicted. Contrary to conventional wisdom, we show that OCS soft can increase and atmospheric CO2 decrease, while surface nutrients show minimal change and export production decreases.While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research

    How does ocean biology affect atmospheric pCO2? Theory and models

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07032, doi:10.1029/2007JC004598.This paper examines the sensitivity of atmospheric pCO2 to changes in ocean biology that result in drawdown of nutrients at the ocean surface. We show that the global inventory of preformed nutrients is the key determinant of atmospheric pCO2 and the oceanic carbon storage due to the soft-tissue pump (OCS soft ). We develop a new theory showing that under conditions of perfect equilibrium between atmosphere and ocean, atmospheric pCO2 can be written as a sum of exponential functions of OCS soft . The theory also demonstrates how the sensitivity of atmospheric pCO2 to changes in the soft-tissue pump depends on the preformed nutrient inventory and on surface buffer chemistry. We validate our theory against simulations of nutrient depletion in a suite of realistic general circulation models (GCMs). The decrease in atmospheric pCO2 following surface nutrient depletion depends on the oceanic circulation in the models. Increasing deep ocean ventilation by increasing vertical mixing or Southern Ocean winds increases the atmospheric pCO2 sensitivity to surface nutrient forcing. Conversely, stratifying the Southern Ocean decreases the atmospheric CO2 sensitivity to surface nutrient depletion. Surface CO2 disequilibrium due to the slow gas exchange with the atmosphere acts to make atmospheric pCO2 more sensitive to nutrient depletion in high-ventilation models and less sensitive to nutrient depletion in low-ventilation models. Our findings have potentially important implications for both past and future climates.While at MIT, I.M. was supported by the NOAA Postdoctoral Program in Climate and Global Change, administered by the University Corporation for Atmospheric Research
    • …
    corecore