56 research outputs found

    Evaluating Nutrient Reduction, Grazing and Barley Straw as Measures Against Algal Growth

    Get PDF
    The aim of our study was to experimentally investigate whether it is possible to reduce nuisance growth of filamentous algae in freshwater ecosystems. We used an experimental set-up mimicking a shallow pond system and performed a field investigation in the eutrophic moat of Krapperup castle (Southern Sweden), which exemplifies an extremely impaired ecosystem with ample growth of filamentous green algae. The indoor experiment tested three treatments: I) reduced nutrient concentrations, II) invertebrate grazers and III) addition of barley straw, which may constitute measures against filamentous algal growth and thereby improve the quality of the ecosystem services provided by water bodies. Our results show a decrease in cyanobacteria and diatom abundances in all mesocosms as filamentous algae biomass increased, suggesting that the microalgae suffered from nutrient and light competition with filamentous algae. A tendency for lower filamentous algae final biomass, as well as coverage, was observed in the treatment where the concentration of nutrients was reduced. Grazers treatment showed a tendency to inhibit filamentous algae growth on artificial macrophytes towards the end of the experiment, suggesting that snails initially fed on their preferred food source (diatoms), until it was almost depleted and then started to feed on filamentous algae. Interestingly, the barley straw treatment was the only treatment promoting macrophytes growth and enhancing diatom biomass, but this did not affect filamentous algae biomass. However, the ratio between filamentous algae and macrophyte final biomasses was significantly lower in the straw treatment. In a broader context, it is likely that in a long-term perspective the positive effect of barley straw on macrophyte growth will promote a shift from dominance by filamentous algae to macrophytes as main primary producer. Moreover, our experiment shows that barley straw may be effective in reducing cyanobacterial growth, which may lead to improved water quality and thereby ecosystem services, such as supporting and cultural ecosystem services, since cyanobacteria may produce potent toxins and pose a serious risk to human and animal health. Altogether, our experimental results have important implications for the challenge of reversing nuisance filamentous algal blooms in highly eutrophic systems

    Charophytes collapse beyond a critical warming and brownification threshold in shallow lake systems

    Get PDF
    Charophytes play a critical role for the functioning of shallow lake ecosystems. Although growth of charophytes can be limited by many factors, such as temperature, nutrients and light availability, our understanding about concomitant effects of climate warming and other large-scale environmental perturbations, e.g. increases in humic matter content ('brownification') is still limited. Here we conducted an outdoor mesocosm experiment during 71 days with a common charophyte species, Chara vulgaris, along an increasing gradient of temperature and brownification. We hypothesized the growth of C. vulgaris to increase with temperature, but to level off along the combined temperature and brownification gradient when reaching a critical threshold for light limitation via brownification. We show that C. vulgaris increases the relative growth rate (RGR), main and total shoot elongation, as well as number of lateral shoots when temperature and brownification increased by +2 degrees C and + 100%, respectively above today's levels. However, the RGR, shoot elongation and number of lateral shoots declined at further increment of temperature and brownification. Macrophyte weight-length ratio decreased with increased temperature and brownification, indicating that C. vulgaris allocate more resources or energy for shoot elongation instead of biomass increase at warmer temperatures and higher brownification. Our study shows that C. vulgaris will initially benefit from warming and brownification but will then decline as a future scenario of increased warming and brownification reaches a certain threshold level, in case of our experiment at +4 degrees C and a 2-fold increase in brownification above today's levels. (C) 2019 Elsevier B.V. All rights reserved

    Integrating multiple dimensions of ecological stability into a vulnerability framework

    Get PDF
    Ecological stability encompasses multiple dimensions of functional and compositional responses to environmental change. Though no single stability dimension used in isolation can fully reflect the overall response to environmental change, a common vulnerability assessment that integrates simultaneously across multiple stability components is highly desirable for ecological risk assessment. We develop both functional and compositional counterparts of a novel, integrative metric of overall ecological vulnerability (OEV). We test the framework with data from a modularized experiment replicated in five lakes over two seasons, examining functional and compositional responses to both pulse and press disturbances across three trophic groups. OEV is measured as the area under the curve integrated over the entire observation period, with the curve delimiting the difference between the disturbance treatment and undisturbed parallel controls, expressed either as the log response ratio of biomass (functional OEV) or community dissimilarity index (compositional OEV). Both, functional and compositional OEV correlated negatively with functional and compositional 'resistance', 'temporal stability' and 'final/extent of recovery' following both pulse and press disturbances, though less so with 'resilience' following a pulse disturbance. We also found a positive correlation between functional and compositional OEV, which reveals the potential to also evaluate the intricate linkage between biodiversity and functional change. Our findings demonstrate that OEV comprises a robust framework to: (a) capture simultaneously multiple functional and compositional stability components, and (b) quantify the functional consequences of biodiversity change. Our results provide the basis for an overarching framework for quantifying the overall vulnerability of ecosystems to environmental change, opening new possibilities for ecological risk assessment and management. Synthesis. Ecological stability comprises multiple dimensions that together encapsulate how ecosystems respond to environmental change. Considering these multiple aspects of stability simultaneously often poses a problem in environmental assessments, which frequently require overarching indicators of risk or vulnerability. While an analysis of multiple dimensions allows for deeper exploration of mechanisms, here we develop and test a new univariate indicator that integrates stability aspects under a broad range of disturbance regimes. Using a modularized experiment in Swedish lakes, we show that this integrative measure captures multiple stability dimensions reflecting compositional and functional vulnerability and their relationships between them

    The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data

    Get PDF
    The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typicallyPeer reviewe

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.Peer reviewe

    Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments

    Get PDF
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.Peer reviewe

    Storm impacts on phytoplankton community dynamics in lakes

    Get PDF
    In many regions across the globe, extreme weather events, such as storms, have increased in frequency, intensity and duration. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. For lake ecosystems, high winds and rainfall associated with storms are linked by short term runoff events from catchments and physical mixing of the water column. Although we have a well-developed understanding of how such wind and precipitation events alter lake physical processes, our mechanistic understanding of how these short-term disturbances 48 translate from physical forcing to changes in phytoplankton communities is poor. Here, we provide a conceptual model that identifies how key storm features (i.e., the frequency, intensity, and duration of wind and precipitation) interact with attributes of lakes and their watersheds to generate changes in a lake’s physical and chemical environment and subsequently phytoplankton community structure and dynamics. We summarize the current understanding of storm-phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions by generating testable hypotheses across a global gradient of lake types and environmental conditions.Fil: Stockwell, Jason D.. University of Vermont; Estados UnidosFil: Adrian, Rita. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Andersen, Mikkel. Dundalk Institute of Technology; IrlandaFil: Anneville, Orlane. Institut National de la Recherche Agronomique; FranciaFil: Bhattacharya, Ruchi. University of Missouri; Estados UnidosFil: Burns, Wilton G.. University of Vermont; Estados UnidosFil: Carey, Cayelan C.. Virginia Tech University; Estados UnidosFil: Carvalho, Laurence. Freshwater Restoration & Sustainability Group; Reino UnidoFil: Chang, ChunWei. National Taiwan University; República de ChinaFil: De Senerpont Domis, Lisette N.. Netherlands Institute of Ecology; Países BajosFil: Doubek, Jonathan P.. University of Vermont; Estados UnidosFil: Dur, Gaël. Shizuoka University; JapónFil: Frassl, Marieke A.. Griffith University; AustraliaFil: Gessner, Mark O.. Leibniz Institute of Freshwater Ecology and Inland Fisheries; AlemaniaFil: Hejzlar, Josef. Biology Centre of the Czech Academy of Sciences; República ChecaFil: Ibelings, Bas W.. University of Geneva; SuizaFil: Janatian, Nasim. Estonian University of Life Sciences; EstoniaFil: Kpodonu, Alfred T. N. K.. City University of New York; Estados UnidosFil: Lajeunesse, Marc J.. University of South Florida; Estados UnidosFil: Lewandowska, Aleksandra M.. Tvarminne Zoological Station; FinlandiaFil: Llames, Maria Eugenia del Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Matsuzaki, Shin-ichiro S.. National Institute for Environmental Studies; JapónFil: Nodine, Emily R.. Rollins College; Estados UnidosFil: Nõges, Peeter. Estonian University of Life Sciences; EstoniaFil: Park, Ho-Dong. Shinshu University; JapónFil: Patil, Vijay P.. US Geological Survey; Estados UnidosFil: Pomati, Francesco. Swiss Federal Institute of Water Science and Technology; SuizaFil: Rimmer, Alon. Kinneret Limnological Laboratory; IsraelFil: Rinke, Karsten. Helmholtz-Centre for Environmental Research; AlemaniaFil: Rudstam, Lars G.. Cornell University; Estados UnidosFil: Rusak, James A.. Ontario Ministry of the Environment and Climate Change; CanadáFil: Salmaso, Nico. Research and Innovation Centre - Fondazione Mach; ItaliaFil: Schmitt, François. Laboratoire d’Océanologie et de Géosciences; FranciaFil: Seltmann, Christian T.. Dundalk Institute of Technology; IrlandaFil: Souissi, Sami. Universite Lille; FranciaFil: Straile, Dietmar. University of Konstanz; AlemaniaFil: Thackeray, Stephen J.. Lancaster Environment Centre; Reino UnidoFil: Thiery, Wim. Vrije Unviversiteit Brussel; Bélgica. Institute for Atmospheric and Climate Science; SuizaFil: Urrutia Cordero, Pablo. Uppsala University; SueciaFil: Venail, Patrick. Universidad de Ginebra; SuizaFil: Verburg, Piet. 8National Institute of Water and Atmospheric Research; Nueva ZelandaFil: Williamson, Tanner J.. Miami University; Estados UnidosFil: Wilson, Harriet L.. Dundalk Institute of Technology; IrlandaFil: Zohary, Tamar. Israel Oceanographic & Limnological Research; IsraelGLEON 20: All Hands' MeetingRottnest IslandAustraliaUniversity of Western AustraliaUniversity of AdelaideGlobal Lake Ecological Observatory Networ

    Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance

    Get PDF
    The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.Peer reviewe

    Current water quality guidelines across North America and Europe do not protect lakes from salinization

    Get PDF
    Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (C-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a >= 50% reduction in cladoceran abundance were at or below Cl thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.Peer reviewe

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Get PDF
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.Peer reviewe
    corecore