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• Chara vulgaris had higher growth
at +2 °C and +100% brownification.

• Growth of C. vulgaris declined at +4 °C
and 200% brownification.

• Studied charophyte growth will de-
cline as warming and brownification
increased.
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Charophytes play a critical role for the functioning of shallow lake ecosystems. Although growth of charophytes
can be limited by many factors, such as temperature, nutrients and light availability, our understanding about
concomitant effects of climate warming and other large-scale environmental perturbations, e.g. increases in
humic matter content (‘brownification’) is still limited. Here we conducted an outdoor mesocosm experiment
during 71 days with a common charophyte species, Chara vulgaris, along an increasing gradient of temperature
and brownification. We hypothesized the growth of C. vulgaris to increase with temperature, but to level off
along the combined temperature and brownification gradient when reaching a critical threshold for light limita-
tion via brownification. We show that C. vulgaris increases the relative growth rate (RGR), main and total shoot
elongation, as well as number of lateral shoots when temperature and brownification increased by +2 °C
and + 100%, respectively above today's levels. However, the RGR, shoot elongation and number of lateral
shoots declined at further increment of temperature and brownification. Macrophyte weight-length ratio
decreased with increased temperature and brownification, indicating that C. vulgaris allocate more re-
sources or energy for shoot elongation instead of biomass increase at warmer temperatures and higher
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brownification. Our study shows that C. vulgaris will initially benefit from warming and brownification but
will then decline as a future scenario of increased warming and brownification reaches a certain threshold
level, in case of our experiment at +4 °C and a 2-fold increase in brownification above today's levels.

© 2019 Elsevier B.V. All rights reserved.
Morphology
Submerged macrophyte
1. Introduction

Submerged macrophytes including charophytes (macroalgae) play
an important role for the ecosystem functioning in shallow freshwater
ecosystems (Blindow et al., 2014; Burks et al., 2006; Meerhoff et al.,
2003). Charophytes improve nutrient retention and water clarity, re-
duce the re-suspension of sediment particles, provide refuges for
small fishes and zooplankton and affect competitive outcomes with
other primary producers, e.g., phytoplankton and periphyton (O'Hare
et al., 2018; Blindow et al., 2014; Rojo et al., 2013; van den Berg et al.,
1998). The growth of charophytes can be limited bymany environmen-
tal factors, e.g., light availability, salinity, nutrients and temperature
(Puche et al., 2018; Rojo et al., 2017; Sanjuan et al., 2017). Charophytes
and other submergedmacrophytes generally show higher growth rates
at warmer temperatures (Li et al., 2017; Joye and Rey-Boissezon, 2015;
Mckee et al., 2002), but they often decline with increasing shading or
decreasing water transparency (Hilt et al., 2018; Hidding et al., 2016).
However, at present little is known about the concomitant effects on
charophytes of the globalwarming and other large-scale environmental
perturbations, which are of considerable concern (Rojo et al., 2017;
Pelechata et al., 2015).

According to the IPCC (2013), the global average temperature will
increase between 0.3 °C to 6.4 °C by the end of this century. This may
have profound effects on biodiversity and ecosystem functioning of
fresh waters, particularly for lakes (Moss et al., 2003), as well as the
growth of charophytes (Puche et al., 2018). Charophytes might benefit
fromwarming (Joye and Rey-Boissezon, 2015) due to higher photosyn-
thetic rates, light use efficiency and growth (Rojo et al., 2017; Rooney
and Kalff, 2000; Barko and Smart, 1981). Besides global warming,
other large-scale environmental changes are expected to occur si-
multaneously in the future, for example, increases in humic sub-
stances reaching freshwaters from the surrounding land have
dramatically increased in northern Europe and North America in
last decades, a phenomenon known as ‘brownification’ (Monteith
et al., 2007). Transportation of humic substances from terrestrial to
aquatic systems due to increased precipitation will further intensify
the brownification of freshwater systems in the future (Weyhenmeyer
et al., 2016). Brownification can have both positive and negative effects
on charophytes; for example, photodegradation of DOC (dissolve or-
ganic carbon) can increase CO2 concentrations in lakes and thereby en-
hance photosynthesis and macrophyte growth (Reitsema et al., 2018).
In addition, DOC attenuates UV-B radiation, which is harmful formacro-
phyte growth (Reitsema et al., 2018). On the other hand, brownification
reduces the depth of the euphotic zone in lakes, and this will affect pri-
mary producers, such as phytoplankton andmacrophytes, through light
attenuation and thereby limiting photosynthesis (Mormul et al., 2012;
Ask et al., 2009).

A major endeavor of the scientific community and water managers
today is to reveal patterns of change along gradients of multiple envi-
ronmental perturbations and so to identify abrupt biological responses
of ecosystem functioning and biodiversity (Burkett et al., 2005). Future
projections of climate warming and brownification trends show large
spatial and temporal variation across the globe (Weyhenmeyer et al.,
2016; IPCC, 2013; Easterling et al., 2000). Such spatio-temporal varia-
tion will expose charophytes in shallow lakes to strong gradients in
temperature and brownification, even over a single growing season. Re-
cent studies have shown strong effects of warming and brownification
on the growth and biodiversity of other primary producers in lakes,
either as combined pressures or in isolation (Li et al., 2017; Urrutia-
Cordero et al., 2017; Hansson et al., 2013), yet our understanding on
the responses of charophytes to gradients of such environmental per-
turbations remains elusive.

In this context, rather than investigating growth responses by
charophytes to individual environmental pressures (warming or
brownification in isolation), which are important for the mechanistic
understanding of stressor-effects, but have commonly been assessed
with either macrophytes or other primary producers (Li et al., 2017;
Urrutia-Cordero et al., 2016b; Hansson et al., 2013; Mormul et al.,
2012; Moss et al., 2003), here we employed a mesocosm experiment
with a gradient design. This gradient consisted of six combined levels
of increasing temperature and brownification in concert, as projected
by future climate models (Weyhenmeyer et al., 2016; IPCC, 2013), and
which enabled us to identify threshold levels after which charophyte
growth was critically affected. We used Chara vulgaris as model
organisms because charophytes are widely distributed and often domi-
nate the primary producer communities of shallow temperate lakes
(Schubert et al., 2018; Rey-Boissezon and Joye, 2015), where they
strongly contribute to the stability of clearwater states through positive
feedback mechanisms (see Hilt et al., 2018; Schubert et al., 2018;
Hidding et al., 2016). Hence, charophytes are often critical for avoiding
regime shifts from clear water states to unhealthy, turbid states with
frequent occurrence of toxic algal blooms (Urrutia-Cordero et al.,
2016a; Urrutia-Cordero et al., 2015; Ekvall et al., 2014). We hypothe-
sized that at the lower end of the gradient both brownification and tem-
peraturewill have positive effects on the growth C. vulgaris due to faster
metabolism of macrophytes at elevated temperatures (sensu Barko and
Smart, 1981), as well as increased photosynthesis due to increased CO2

released from degradation of DOC (sensu Salonen and Vähätalo, 1994).
However, we also predicted the growth of C. vulgaris to level off along
the temperature and brownification gradient when reaching a certain
threshold for light limitation via brownification. Identifying the exis-
tence of such a threshold, and its approximate position along the gradi-
ent of warming and brownification, may be of considerable importance
for managers and decision makers in preparation for large-scale
changes in ecosystem function and services, as brownification and
warming simultaneously increase in many freshwater environments.

2. Material and methods

2.1. Outdoor mesocosms

The outdoor mesocosm experiment consisted of 24 insulated cylin-
drical polyethylene containers (inner diameter 0.7 m, depth 1 m, vol-
ume 400 L) subject to natural light conditions. The mesocosms were
randomly placed in a block design, with six mesocosms in each row
and a total four rows, at the Lund University's experimental facilities
(55°42′N, 13°12′E). The average daily total solar radiation for this area
was 332 W m−2 (minimum: 58 Wm−2 and maximum: 498 Wm−2)
during the experimental period (Lund University weather station,
SMHI, 2013). However, regular photosynthetic active radiation (PAR)
measurements could not be made in mesocosms since the sun is
never in zenith at the latitudes of Sweden and thereby the mesocosm
walls will shade the incoming light in different mesocosms. Therefore,
we calculated diffuse attenuation coefficient (Kd; cm−1) for PAR based
on Morris et al. (1995) by using the equation Kd PAR = 1.30 [a420] +
0.12 where, a420 = absorbance value at 420 nm. Our treatments
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generated constantly different diffuse light absorptions (Kd) through
thewater column (see Fig. S1for diffuse absorption coefficient in control
and particular treatments).

2.2. Temperature treatment

Each mesocosm was filled with 400 L of unfiltered lake water col-
lected from the shallow eutrophic Lake Krankesjön (55°42′N, 13°27′E)
located in southern Sweden (see Table S1 for water chemistry data of
Lake Krankesjön). The water temperature in the mesocosms was con-
trolled by a computerized system (for technical details, see Hansson
et al., 2013) consisting of real-time temperature sensors and aquarium
heaters (Jäger 150 W), which controlled the temperature in heated
mesocosms in relation to ambient (control) conditions (Fig. 1). Each
mesocosm received a gentle air flow to avoid temperature differences
and water column stratification (Fig. 1). The daily average temperature
in the controlmesocosmswas 19.20 °C (minimum: 15.48 °C,maximum:
23.88 °C) during the whole experimental period (see Fig. S2a). The
mesocosms mimicked shallow lake ecosystems and therefore did not
take into account the thermal stratification processes occurring in
deeper lakes (Urrutia-Cordero et al., 2017).

2.3. Brownification treatment

Brownification, the increment of yellow-brown color of lake and
stream water, strongly absorbs solar radiation in the short wave-
length part of the visible spectrum (Graneli, 2012). Traditionally,
brownification has been measured using a platinum salt solution
as reference, which has today been substituted by measurements
of absorbance at wavelengths around 400 nm (Graneli, 2012). We
applied six treatments combining warming and brownification
Temperature sens

Control +

Macrophyte
Plastic pot

Lifting rope

Mesocosm

+3°C +

Fig. 1. Schematic diagram of experimental growth of submerged macrophyte, Cha
along a gradient: i) control treatment: no manipulation of tempera-
ture and brownification (or water color) of lake water, ii) treatment
1: +1 °C increase in temperature and 0.5-fold (50%) increase in
brownification compared to control, iii) treatment 2: +2 °C increase
in temperature and 1-fold (+100%) increase in brownification com-
pared to control, iv) treatment 3: +3 °C increase in temperature and
1.5-fold (+150%) increase in brownification compared to control,
v) treatment 4: +4 °C increase in temperature and 2-fold (+200%)
increase in brownification compared to control and. vi) treatment
5: +5 °C increase in temperature and 2.5-fold (+250%) increase in
brownification compared to control. All the treatments were repli-
cated four times. To increase the brownification in the water along
the treatment gradient (Fig. 1), we added once a week commercially
available humic and fulvic acids (HuminFeed®, Humintech, Germany;
see Urrutia-Cordero et al., 2016a, 2016b, 2017). The experimental treat-
ments were manipulated using water color based on absorbance mea-
surements at 420 nm as a proxy for brownification (Urrutia-Cordero
et al., 2017; Weyhenmeyer et al., 2016). The increase in absorbance
was maintained every week by adding humic substances from a
stock solution in distilled water (1 g L−1). No differences in pH or nu-
trients were recorded among treatments due to addition of humic
substances (Fig. S2c and S3). The average pH in the controls was
8.93 (minimum: 7.42; maximum: 9.86) during the whole experi-
mental period (for details see Fig. S2c). Distilled water was added
every week to each mesocosm in order to compensate for evapora-
tion and 1 mL of commercially available plant nutrients (Blomstra
växtnäring, Cederroth, Upplands Visby, Sweden; 50.1 g L−1 total ni-
trogen and 10.0 g L−1 total phosphorus) was added every second
week to maintain similar nutrient levels in all mesocosms (see
Fig. S3 for total phosphorus and total N concentration in controls
and particular treatments).
or HeaterAir flow

1°C +2°C 

4°C +5°C 

400 Litre

ra vulgaris, along an increasing gradient of temperature and brownification.
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Our experimentalmanipulationswere based on temperature projec-
tions by climate models (IPCC, 2013) and brownification scenarios for
southern Swedish lakes (Hansson et al., 2013) mimicking future
projected increases in brownification for Swedish lakes during the com-
ing 50–75 years (Weyhenmeyer et al., 2016). Temporal variation in
temperature, absorbance and pH during the experimental period are
given in the supplementary information, Fig. S2.

2.4. Macrophyte cultivation

Healthy and clean shoots of C. vulgaris were collected from lake
Krankesjön and one 10 cm apical shoot (without any lateral shoots)
was planted into small plastic pots filled with lake sediment and placed
on a tray in each mesocosm. We used ropes to lift and lower the trays
with pots for gentle and non-destructive sampling (Fig. 1). The macro-
phyte growth experiment ran between 13th May to 22nd July 2013,
i.e. for a total of 71 days. Once a week we lifted the tray and counted
the number of lateral shoots and measured the length of the main
shoot and lateral shoots in each treatment. At the end of the experiment
all the macrophytes were harvested, main shoot and total shoot length
(including length of main shoot and lateral shoots) were recorded and
plant dry weight was measured to the precision of four decimals on a
Sartorius Analytic A210P balance after drying at 60 °C for 48 h (Termaks
drying oven 8000 series).Wemeasured relative growth rate (RGR) of C.
vulgaris by using the formula, RGR=(lnW2-lnW1)/Δ t where,W1= ini-
tial dry weight, W2 = end dry weight, Δ t = total number of days. For
measuring initial dry weight of C. vulgaris, we used ten individual apical
shoots similar to those used inmesocosm experiment (10 cm long each,
without any lateral shoots). The shoots were dried at 60 °C for 48 h and
weighted to the precision of four decimals as described above. We also
measured the ratio of plant dryweight and total length at the end of the
experiment according to Mormul et al. (2012).

3. Statistical analyses

We used one-way ANOVA to check for treatment effects on a) the
RGR, b) the total increase of main shoot and total shoot lengths and
c) number of lateral shoots at the end of experiment. A mixed-model
ANOVA was used to check the effect of treatments on the increment
rate of total shoot lengths at three sampling periods (i.e. May, June
and July) where sampling time and treatments were considered as
fixed factors and individual mesocosms as a random factor. Data of the
ratio betweenmacrophyte dry weight and lengthwere log transformed
prior to analysis in order to meet the assumptions of parametric tests.
Tukey's pairwise comparison was used to test the significance of
differences between the treatments. Data from treatment 3 (+3 °C
and +150% brownification) was excluded from all statistical analyses
since 3 out of 4 replicates of C. vulgaris died in this treatment after
three weeks.

4. Results

The relative growth rate (RGR) of C. vulgaris significantly differed
(One-way ANOVA, F4, 11 = 6.45, p b 0.05) between the treatments.
In general, C. vulgaris showed higher RGR at treatment 2 (+2 °C
and + 100% brownification) while RGR at treatment 4 (+4 °C and
200% brownification) was significantly lower than treatment 2 and
ambient conditions (control) (Fig. 2A, Tukey's pairwise comparison,
p b 0.05). The difference in RGR between treatment 2 and treatment
5 (+5 °C and 250% brownification) was marginally significant
(Fig. 2A, Tukey's pairwise comparison, p = 0.06). Although we did
not find any significant differences (One-way ANOVA, p = 0.056)
between the treatments on total increment of main shoot length,
there was a trend towards increased main shoot length with in-
creasing temperature and brownification until treatment 2 along
the gradient and then main shoot length declined with further
brownification in treatment 4 and 5 (Fig. 2B). A similar trend was
also observed for increment of total shoot lengths where treatment 2
showed significantly higher increment compared to treatment 4, treat-
ment 5 and ambient conditions (Fig. 2C, one-way ANOVA, F4, 11= 7.33,
p b 0.05, Tukey's pairwise comparison). We found significant differ-
ences between the treatments on total number of lateral shoots at the
end of the experiment (Fig. 2D, one-way ANOVA, F4, 11 = 5.79, p b

0.05, Tukey's pairwise comparison). The number of lateral shoots was
significantly higher in treatment 2 compared to the treatment 4 and 5
(Fig. 2D, Tukey's pairwise comparison) while no difference was ob-
served between other treatments. C. vulgaris tended to decrease in dry
weight-length ratio with increasing temperature and brownification
(Fig. 2E), although the change was not formally significant (p b 0.060).

Our mixed-model ANOVA showed significant main effects of treat-
ments and time on the increment rate of total shoot length during the
experiment (Fig. 3; Table S2) while interaction effects between time
and treatments were not significant (Table S2). Shoot increment rates
were significantly higher in July compared to May and June (One-way
ANOVA, F2, 33=6.76, p b 0.05). On theother hand, total shoot increment
rates were significantly higher for the treatment 2 compared to treat-
ment 4 and 5 (Fig. 3).

5. Discussion

Environmental factors, such as light, nutrients and temperature, af-
fect the growth and distribution of charophytes and other submerged
macrophytes in shallow lakes (Joye and Rey-Boissezon, 2015; Hidding
et al., 2010; Havens et al., 2004). Our results, aiming at assessing how
predicted future increases in both temperature and brownification
will affect charophytes, showed an increase in relative growth rate
(RGR) of C. vulgaris at 100% increase in brownification and 2 °C increase
in temperature compared to ambient conditions. Exposure of humic
substances to UV radiation can degrade DOC and release CO2 (Salonen
and Vähätalo, 1994) that can be used by charophytes during photosyn-
thesis. In addition, a previous study shows that DOC can be photochem-
ically transformed into dissolved inorganic carbon (DIC- including
bicarbonate) (Johannessen et al., 2007) and many submerged macro-
phytes, including charophytes, take advantage of bicarbonates for the
photosynthetic process (Madsen and Sandjensen, 1991). Therefore, in-
creased DOC due to brownification of freshwater may act as an addi-
tional resource for charophyte growth. The growth and distribution of
C. vulgaris are generally found to bepositively related to temperature in-
creases (Puche et al., 2018; Joye and Rey-Boissezon, 2015). A previous
study has shown a seven-fold increase in RGR of C. vulgaris when tem-
peraturewas increased from 23 °C to 27 °C (Rojo et al., 2017). However,
in our study a 4 °C increase in temperature along with 200% increase in
brownification reduced the growth of C. vulgariswhichwas likely due to
light limitation as brownification increased. Earlier studies have shown
that light limitation is one of themost critical factors responsible for the
decline of charophytes (Schubert et al., 2018; Blindow et al., 2014) and
in shallowwater ecosystems this decline occurs rapidly at a certain crit-
ical turbidity (Hidding et al., 2016; Scheffer et al., 1993). Therefore, be-
yond a certain threshold of brownification, the negative effect from
light limitation on charophyte growth may no longer be compensated
by increasing temperatures. Our experimental design provides crucial
information regarding the change in charophyte growth in response
to simultaneously elevated warming and brownification along a gradi-
ent. However, this experimental design does not allow for separation
of the relative strength of each stressor. It is possible that there are com-
plex interactions between the two stressors on the growth of
charophytes, and that these effects are dependent on species-specific
traits as well as local environmental conditions (Puche et al., 2018;
Rojo et al., 2017; Joye and Rey-Boissezon, 2015).

We found that the total shoot length of C. vulgaris increased with
temperature and brownification up to+2 °C and+100% brownification
along the gradient. This is likely due to the morphological traits that
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allow charophytes and other submergedmacrophytes to overcome low
light conditions since stem elongation towards the water surface will
help charophytes to retrieve light (Asaeda et al., 2007). Light limitation
usually causes elongation of thalli in charophytes growing in deep
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Fig. 3. Total shoot increment rates of Chara vulgaris at different temperatures and
brownification treatments (mean ± 1 SE) (Control = ambient temperature, no
color added; 1 = +1 °C and 50% brownification; 2 = +2 °C and + 100% brownification,
4 = +4 °C and 200% brownification and 5 = +5 °C and 250% brownification).
waters, such as Lychnothamnus barbatus (Pelechaty et al., 2017),
Nitellopsis obtusa (Larkin et al., 2018), and Chara fibrosa (Asaeda et al.,
2007). However, we observed a decline in total shoot length of C.
vulgaris in the treatments where brownification was elevated above
+200% compared to the controls. Our study also showed a temporal
variation in the rates of total shoot increment where highest rates
were observed in July and at +2 °C and +100% brownification. We
also found that the dry weight-length ratio of C. vulgaris eventually de-
clinedwith increasing temperature and brownification, implying that C.
vulgaris usesmore energy for shoot elongation compared to biomass al-
location at the higher end of the gradient of brownification and temper-
ature increases. A similar trend was also observed for Chara hispida
grown at different photosynthetically active radiations (PAR) where
the weight-length ratio decreased with decreased PAR (Schneider
et al., 2006).

Mesocosm experiments provide a strong predictive basis to under-
stand the response of organisms to ongoing environmental changes
(Urrutia-Cordero et al., 2017; Stewart et al., 2013; Spivak et al., 2011).
Our experiment captured the growth of charophytes under a scenario
of climate warming and brownification conditions in north temperate
lakes (Weyhenmeyer et al., 2016; IPCC, 2013). However, caution should
be taken to scale up results to future climate change scenarios (Stewart
et al., 2013). First, the temporal scales of projected natural increase in
warming and brownification (Weyhenmeyer et al., 2016; IPCC, 2013)
for the next decades will be longer than in our experiment. Second,
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our manipulations have been done with water from one lake and the
background level of brownification may show spatial variations across
different regions, which then might determine the threshold level of
brownification after which charophytes start to decline. Moreover, phe-
notypic plasticity of populations and the ecotypes can influence the re-
sponse of charophytes to environmental changes (Puche et al., 2018;
Rojo et al., 2015).

In conclusion, we here show that a likely climate scenario of
increased warming and brownification in concert will initially lead to
increased growth of C. vulgaris in northern Europe. However, as
brownification increases further, C. vulgaris will decline after crossing
certain threshold levels for light limitations, which may cause rapid
changes in the macrophyte communities, especially charophytes. The
understanding on how simultaneously occurring stressors, such as
global warming and brownification, may induce threshold effects on
key species is crucial for accurate decision making and management in
preparing for changes in ecosystem function and services from freshwa-
ter systems.
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