577 research outputs found

    Random Projections For Large-Scale Regression

    Full text link
    Fitting linear regression models can be computationally very expensive in large-scale data analysis tasks if the sample size and the number of variables are very large. Random projections are extensively used as a dimension reduction tool in machine learning and statistics. We discuss the applications of random projections in linear regression problems, developed to decrease computational costs, and give an overview of the theoretical guarantees of the generalization error. It can be shown that the combination of random projections with least squares regression leads to similar recovery as ridge regression and principal component regression. We also discuss possible improvements when averaging over multiple random projections, an approach that lends itself easily to parallel implementation.Comment: 13 pages, 3 Figure

    Operational management of trunk main discolouration risk

    Get PDF
    Despite significant on-going investment, water companies continue to receive an unacceptable number of discolouration related customer contacts. In this paper, data from intensive distribution system turbidity monitoring and cluster analysis of discolouration customer contacts indicate that a significant proportion of these contacts are due to material mobilising from the trunk main system, and operational flow increases are shown to have a higher discolouration risk than burst incidents. A trunk main discolouration incident highlighting this risk is discussed, demonstrating the need for pro-active trunk main risk assessments. To identify the source of the material event flow rates were modelled using the PODDS (prediction of discolouration in distribution systems) discolouration model. Best practice pro-active management is demonstrated in a case study where the PODDS model is used to implement managed incremental flow changes on a main with known discolouration risk with no discolouration impact to customers and significant cost savings

    Development of the ASQoL: a quality of life instrument specific to ankylosing spondylitis

    Get PDF
    Background: Although disease-specific health status measures are available for ankylosing spondylitis (AS), no instrument exists for assessing quality of life (QoL) in the condition. Objective: To produce an AS-specific QoL measure that would be relevant and acceptable to respondents, valid, and reliable. Methods: The ASQoL employs the needs-based model of QoL and was developed in parallel in the UK and the Netherlands (NL). Content was derived from interviews with patients in each country. Face and content validity were assessed through patient field test interviews (UK and NL). A postal survey in the UK produced a more efficient version of the ASQoL, which was tested for scaling properties, reliability, internal consistency, and validity in a further postal survey in each country. Results: A 41 item questionnaire was derived from interview transcripts. Field testing interviews confirmed acceptability. Rasch analysis of data from the first survey (n=121) produced a 26 item questionnaire. Rasch analysis of data from the second survey (UK: n=164; NL: n=154) showed some item misfit, but showed that items formed a hierarchical order and were stable over time. Problematic items were removed giving an 18 item scale. Both language versions had excellent internal consistency (α=0.89–0.91), test-retest reliability (r(s)=0.92 UK and r(s)=0.91 NL), and validity. Conclusions: The ASQoL provides a valuable tool for assessing the impact of interventions for AS and for evaluating models of service delivery. It is well accepted by patients, taking about four minutes to complete, and has excellent scaling and psychometric properties

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    Strings on conifolds from strong coupling dynamics, part I

    Full text link
    A method to solve various aspects of the strong coupling expansion of the superconformal field theory duals of AdS_5 x X geometries from first principles is proposed. The main idea is that at strong coupling the configurations that dominate the low energy dynamics of the field theory compactified on a three sphere are given by certain non-trivial semi-classical configurations in the moduli space of vacua. We show that this approach is self-consistent and permits one to express most of the dynamics in terms of an effective N=4 SYM dynamics. This has the advantage that some degrees of freedom that move the configurations away from moduli space can be treated perturbatively, unifying the essential low energy dynamics of all of these theories. We show that with this formalism one can compute the energies of strings in the BMN limit in the Klebanov-Witten theory from field theory considerations, matching the functional form of results found using AdS geometry. This paper also presents various other technical results for the semiclassical treatment of superconformal field theories.Comment: 52 pages, JHEP3 styl

    Resonance Fluorescence Spectrum of a Trapped Ion Undergoing Quantum Jumps

    Full text link
    We experimentally investigate the resonance fluorescence spectrum of single 171Yb and 172Yb ions which are laser cooled to the Lamb-Dicke regime in a radiofrequency trap. While the fluorescence scattering of 172Yb is continuous, the 171Yb fluorescence is interrupted by quantum jumps because a nonvanishing rate of spontaneous transitions leads to electron shelving in the metastable hyperfine sublevel 2D3/2(F=2). The average duration of the resulting dark periods can be varied by changing the intensity of a repumping laser field. Optical heterodyne detection is employed to analyze the fluorescence spectrum near the Rayleigh elastic scattering peak. It is found that the stochastic modulation of the fluorescence emission by quantum jumps gives rise to a Lorentzian component in the fluorescence spectrum, and that the linewidth of this component varies according to the average duration of the dark fluorescence periods. The experimental observations are in quantitative agreement with theoretical predictions.Comment: 14 pages including 4 figures, pdf file, fig.1 replace

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore