50 research outputs found

    Species mixing reduces drought susceptibility of Scots pine (Pinus sylvestris L.) and oak (Quercus robur L., Quercus petraea (Matt.) Liebl.) – Site water supply and fertility modify the mixing effect

    Get PDF
    Tree species mixing has been widely promoted as a promising silvicultural tool for reducing drought stress. However, so far only a limited number of species combinations have been studied in detail, revealing inconsistent results. In this study, we analysed the effect of mixing Scots pine and oak (pedunculate oak and sessile oak) trees on their drought response along a comprehensive ecological gradient across Europe. The objective was to improve our knowledge of general drought response patterns of two fundamental European tree species in mixed versus monospecific stands. We focused on three null hypotheses: () tree drought response does not differ between Scots pine and oak, () tree drought response of Scots pine and oak is not affected by stand composition (mixture versus monoculture) and () tree drought response of Scots pine and oak in mixtures and monocultures is not modified by tree size or site conditions. To test the hypotheses, we analysed increment cores of Scots pine and oak, sampled in mixed and monospecific stands, covering a wide range of site conditions. We investigated resistance (the ability to maintain growth levels during drought), recovery (the ability to restore a level of growth after drought) and resilience (the capacity to recover to pre-drought growth levels), involving site-specific drought events that occurred between 1976 and 2015. In monocultures, oak showed a higher resistance and resilience than Scots pine, while recovery was lower. Scots pine in mixed stands exhibited a higher resistance, but also a lower recovery compared with Scots pine in monocultures. Mixing increased the resistance and resilience of oak. Ecological factors such as tree size, site water supply and site fertility were found to have significant effects on the drought response. In the case of Scots pine, resistance was increased by tree size, while recovery was lowered. Resistance of oak increased with site water supply. The observed mixing effect on the tree drought response of Scots pine and oak was in some cases modified by the site conditions studied. Positive mixing effects in terms of resistance and resilience of oak increased with site water supply, while the opposite was found regarding recovery. In contrast, site fertility lessened the positive mixing effect on the resistance of Scots pine. We hypothesise that the observed positive mixing effects under drought mainly result from water- and/or light-related species interactions that improve resource availability and uptake according to temporal and spatial variations in environmental conditions.This work was supported by the European Union as part of the ERA-Net SUMFOREST project REFORM – Mixed species forest management. Lowering risk, increasing resilience (2816ERA02S, PCIN2017-026) and the Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreement No 778322. All contributors thank their national funding institutions for supporting the establishment, mensuration and analysis of the studied triplets. The first author wants to thank the German Federal Ministry of Food and Agriculture (BMEL) for financial support through the Federal Office for Agriculture and Food (BLE) (grant number 2816ERA02S), as well as the Bayerische Staatsforsten (BaySF) and Landesbetrieb Forst Brandenburg for providing suitable research sites. Research on the Lithuanian triplets (LT 1, LT 2) was made possible by the national funding institution Research Council of Lithuania (LMTLT) (agreement number S-SUMFOREST-17-1). The French site FR 1 belongs to the OPTMix experimental site (https://optmix.irstea.fr), which is supported annually by Ecofor, Allenvi, and the French national research infrastructure ANAEE-F. A special thank is due to Peter Biber for supporting the statistical analysis

    Organic Farming e-book

    Get PDF
    A agricultura biolĂłgica estĂĄ-se a tornar cada vez mais importante como um caminho preferencial para a produção de produtos agrĂ­colas, face Ă  crescente procura do mercado mundial. A relevĂąncia da agricultura biolĂłgica Ă© ainda maior, devido Ă  necessidade e procura de produtos agrĂ­colas de origem biolĂłgica, que sĂŁo isentos de produtos quĂ­micos, saudĂĄveis e amigos do ambiente. Atualmente, a agricultura biolĂłgica resulta em produtos de valor acrescentado, mas estes sistemas de produção exigem abordagens especializadas. Verifica-se uma lacuna de conhecimento especializado para enfrentar os desafios e exigĂȘncias da agricultura biolĂłgica. AlĂ©m disso, um nĂșmero crescente de pessoas com nĂ­veis elevados de educação estĂĄ a mudar a sua atividade para a agricultura sem qualquer tipo de formação nesta ĂĄrea tĂ©cnica, principalmente em paĂ­ses com dificuldades econĂłmicas, como Portugal. HĂĄ, portanto, necessidade de desenvolver a capacidade de pessoas com algum tipo de qualificação prĂ©vio, a fim de melhorar suas competĂȘncias agrĂ­colas e facilitar a sua capacidade de desempenho e inovação, para que possam contribuir para a EstratĂ©gia Europeia (CE) de Desenvolvimento Rural. Este e-book foi concebido para melhorar as competĂȘncias desses agricultores. O seu objectivo geral Ă© dotar os novos agricultores com conhecimentos e capacidades necessĂĄrios para o desenvolvimento da cadeia de valor dos produtos da agricultura biolĂłgica. Os objectivos especĂ­ficos sĂŁo: i) Fornecer conhecimento bĂĄsico em vĂĄrios aspectos da agricultura biolĂłgica e ĂĄreas afins, tais como a gestĂŁo de recursos naturais (solo, ĂĄgua, plantas, ambiente) e desenvolvimento rural (conservação, agricultura biolĂłgica e familiar, multifuncionalidade). ii) Facilitar a troca efetiva de conhecimento e experiĂȘncias em agricultura biolĂłgica, desenvolvimento rural e ambiente. iii) Oferecer suporte tĂ©cnico e conhecimento em agricultura biolĂłgica num contexto de mobilidade e em ambiente de trabalho. Este e-livro, produzido em sete idiomas diferentes (PortuguĂȘs, InglĂȘs, Espanhol, Italiano, Eslovaco, Turco e HĂșngaro) tambĂ©m contribui para preservar lĂ­nguas e culturas Europeias e, assim, melhorar a comunicação entre os diferentes intervenientes e grupos-alvo. O e-book inclui os princĂ­pios e tĂ©cnicas da agricultura biolĂłgica, com base no triĂąngulo planta-solo-ambiente e nas relaçÔes entre a produção animal e o ambiente. A preparação de alimentos e rotulagem, marketing e conversĂŁo Ă  agricultura biolĂłgica sĂŁo tambĂ©m abordados. Os princĂ­pios e as tĂ©cnicas apresentadas sĂŁo explicados com base em regras e diretrizes (normas), baseados numa abordagem logĂ­stica que garante o equilĂ­brio e integridade do sistema. O e-book apresenta tambĂ©m os regulamentos e normas nacionais e Europeias que sĂŁo obrigatĂłrias para os agricultores biolĂłgicos.info:eu-repo/semantics/publishedVersio

    Knowledge gaps about mixed forests : What do European forest managers want to know and what answers can science provide?

    Get PDF
    Research into mixed-forests has increased substantially in the last decades but the extent to which the new knowledge generated meets practitioners' concerns and is adequately transmitted to them is unknown. Here we provide the current state of knowledge and future research directions with regards to 10 questions about mixed forest functioning and management identified and selected by a range of European forest managers during an extensive participatory process. The set of 10 questions were the highest ranked questions from an online prioritization exercise involving 168 managers from 22 different European countries. In general, the topics of major concern for forest managers coincided with the ones that are at the heart of most research projects. They covered important issues related to the management of mixed forests and the role of mixtures for the stability of forests faced with environmental changes and the provision of ecosystem services to society. Our analysis showed that the current scientific knowledge about these questions was rather variable and particularly low for those related to the management of mixed forests over time and the associated costs. We also found that whereas most research projects have sought to evaluate whether mixed forests are more stable or provide more goods and services than monocultures, there is still little information on the underlying mechanisms and trade-offs behind these effects. Similarly, we identified a lack of knowledge on the spatio-temporal scales at which the effects of mixtures on the resistance and adaptability to environmental changes are operating. Our analysis may help researchers to identify what knowledge needs to be better transferred and to better design future research initiatives meeting practitioner's concerns.Peer reviewe

    With increasing site quality asymmetric competition and mortality reduces Scots pine (Pinus sylvestris L.) stand structuring across Europe

    Get PDF
    Heterogeneity of structure can increase mechanical stability, stress resistance and resilience, biodiversity and many other functions and services of forest stands. That is why many silvicultural measures aim at enhancing structural diversity. However, the effectiveness and potential of structuring may depend on the site conditions. Here, we revealed how the stand structure is determined by site quality and results from site-dependent partitioning of growth and mortality among the trees. We based our study on 90 mature, even-aged, fully stocked monocultures of Scots pine (Pines sylvestris L.) sampled in 21 countries along a productivity gradient across Europe. A mini-simulation study further analyzed the site-dependency of the interplay between growth and mortality and the resulting stand structure. The overarching hypothesis was that the stand structure changes with site quality and results from the site-dependent asymmetry of competition and mortality.First, we show that Scots pine stands structure across Europe become more homogeneous with increasing site quality. The coefficient of variation and Gini coefficient of stem diameter and tree height continuously decreased, whereas Stand Density Index and stand basal area increased with site index.Second, we reveal a site-dependency of the growth distribution among the trees and the mortality. With increasing site index, the asymmetry of both competition and growth distribution increased and suggested, at first glance, an increase in stand heterogeneity. However, with increasing site index, mortality eliminates mainly small instead of all-sized trees, cancels the size variation and reduces the structural heterogeneity.Third, we modelled the site-dependent interplay between growth partitioning and mortality. By scenario runs for different site conditions, we can show how the site-dependent structure at the stand level emerges from the asymmetric competition and mortality at the tree level and how the interplay changes with increasing site quality across Europe.Our most interesting finding was that the growth partitioning became more asymmetric and structuring with increasing site quality, but that the mortality eliminated predominantly small trees, reduced their size variation and thus reversed the impact of site quality on the structure. Finally, the reverse effects of mode of growth partitioning and mortality on the stand structure resulted in the highest size variation on poor sites and decreased structural heterogeneity with increasing site quality. Since our results indicate where heterogeneous structures need silviculture interventions and where they emerge naturally, we conclude that these findings may improve system understanding and modelling and guide forest management aiming at structurally rich forests

    Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect

    Get PDF
    The increasing disturbances in monocultures around the world are testimony to their instability under global change. Many studies have claimed that temporal stability of productivity increases with species richness, although the ecological fundamentals have mainly been investigated through diversity experiments. To adequately manage forest ecosystems, it is necessary to have a comprehensive understanding of the effect of mixing species on the temporal stability of productivity and the way in which it is influenced by climate conditions across large geographical areas. Here, we used a unique dataset of 261 stands combining pure and two-species mixtures of four relevant tree species over a wide range of climate conditions in Europe to examine the effect of species mixing on the level and temporal stability of productivity. Structural equation modelling was employed to further explore the direct and indirect influence of climate, overyielding, species asynchrony and additive effect (i.e. temporal stability expected from the species growth in monospecific stands) on temporal stability in mixed forests. We showed that by adding only one tree species to monocultures, the level (overyielding: +6%) and stability (temporal stability: +12%) of stand growth increased significantly. We identified the key effect of temperature on destabilizing stand growth, which may be mitigated by mixing species. We further confirmed asynchrony as the main driver of temporal stability in mixed stands, through both the additive effect and species interactions, which modify between-species asynchrony in mixtures in comparison to monocultures. Synthesis and applications. This study highlights the emergent properties associated with mixing two species, which result in resource efficient and temporally stable production systems. We reveal the negative impact of mean temperature on temporal stability of forest productivity and how the stabilizing effect of mixing two species can counterbalance this impact. The overyielding and temporal stability of growth addressed in this paper are essential for ecosystem services closely linked with the level and rhythm of forest growth. Our results underline that mixing two species can be a realistic and effective nature-based climate solution, which could contribute towards meeting EU climate target policies.Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effectpublishedVersio

    Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect

    Get PDF
    The increasing disturbances in monocultures around the world are testimony to their instability under global change. Many studies have claimed that temporal stability of productivity increases with species richness, although the ecological fundamentals have mainly been investigated through diversity experiments. To adequately manage forest ecosystems, it is necessary to have a comprehensive understanding of the effect of mixing species on the temporal stability of productivity and the way in which it is influenced by climate conditions across large geographical areas. Here, we used a unique dataset of 261 stands combining pure and two-species mixtures of four relevant tree species over a wide range of climate conditions in Europe to examine the effect of species mixing on the level and temporal stability of productivity. Structural equation modelling was employed to further explore the direct and indirect influence of climate, overyielding, species asynchrony and additive effect (i.e. temporal stability expected from the species growth in monospecific stands) on temporal stability in mixed forests. We showed that by adding only one tree species to monocultures, the level (overyielding: +6%) and stability (temporal stability: +12%) of stand growth increased significantly. We identified the key effect of temperature on destabilizing stand growth, which may be mitigated by mixing species. We further confirmed asynchrony as the main driver of temporal stability in mixed stands, through both the additive effect and species interactions, which modify between-species asynchrony in mixtures in comparison to monocultures. Synthesis and applications. This study highlights the emergent properties associated with mixing two species, which result in resource efficient and temporally stable production systems. We reveal the negative impact of mean temperature on temporal stability of forest productivity and how the stabilizing effect of mixing two species can counterbalance this impact. The overyielding and temporal stability of growth addressed in this paper are essential for ecosystem services closely linked with the level and rhythm of forest growth. Our results underline that mixing two species can be a realistic and effective nature-based climate solution, which could contribute towards meeting EU climate target policies

    Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect

    Get PDF
    The increasing disturbances in monocultures around the world are testimony to their instability under global change. Many studies have claimed that temporal stability of productivity increases with species richness, although the ecological fundamentals have mainly been investigated through diversity experiments. To adequately manage forest ecosystems, it is necessary to have a comprehensive understanding of the effect of mixing species on the temporal stability of productivity and the way in which it is influenced by climate conditions across large geographical areas. Here, we used a unique dataset of 261 stands combining pure and two-species mixtures of four relevant tree species over a wide range of climate conditions in Europe to examine the effect of species mixing on the level and temporal stability of productivity. Structural equation modelling was employed to further explore the direct and indirect influence of climate, overyielding, species asynchrony and additive effect (i.e. temporal stability expected from the species growth in monospecific stands) on temporal stability in mixed forests. We showed that by adding only one tree species to monocultures, the level (overyielding: +6%) and stability (temporal stability: +12%) of stand growth increased significantly. We identified the key effect of temperature on destabilizing stand growth, which may be mitigated by mixing species. We further confirmed asynchrony as the main driver of temporal stability in mixed stands, through both the additive effect and species interactions, which modify between-species asynchrony in mixtures in comparison to monocultures. Synthesis and applications. This study highlights the emergent properties associated with mixing two species, which result in resource efficient and temporally stable production systems. We reveal the negative impact of mean temperature on temporal stability of forest productivity and how the stabilizing effect of mixing two species can counterbalance this impact. The overyielding and temporal stability of growth addressed in this paper are essential for ecosystem services closely linked with the level and rhythm of forest growth. Our results underline that mixing two species can be a realistic and effective nature-based climate solution, which could contribute towards meeting EU climate target policies

    Pathophysiology of melanocortin receptors and their accessory proteins.

    Get PDF
    The melanocortin receptors (MCRs) and their accessory proteins (MRAPs) are involved in regulation of a diverse range of endocrine pathways. Genetic variants of these components result in phenotypic variation and disease. The MC1R is expressed in skin and variants in the MC1R gene are associated with ginger hair color. The MC2R mediates the action of ACTH in the adrenal gland to stimulate glucocorticoid production and MC2R mutations result in familial glucocorticoid deficiency (FGD). MC3R and MC4R are involved in metabolic regulation and their gene variants are associated with severe pediatric obesity, whereas the function of MC5R remains to be fully elucidated. MRAPs have been shown to modulate the function of MCRs and genetic variants in MRAPs are associated with diseases including FGD type 2 and potentially early onset obesity. This review provides an insight into recent advances in MCRs and MRAPs physiology, focusing on the disorders associated with their dysfunction

    Skull Base Morphology in Fibroblast Growth Factor Receptor Type 2-Related Faciocraniosynostosis

    No full text
    International audienceBackground: Children with faciocraniosynostosis present skull base abnormalities and may develop hydrocephalus or cerebellar tonsils ectopia (CTE). Several pathophysiological hypotheses were formulated in the past decades to explain these associations. However, no study has described in a genetically homogeneous population with confirmed fibroblast growth factor receptor type 2 (FGFR2) mutation eventual correlations between skull base abnormalities and hydrocephalus or CTE.Objective: To illustrate these features in children <2 years of age with a genetically confirmed FGFR2-related faciocraniosynostosis.Methods: We measured the foramen magnum area (FMA) and its sagittal and transversal components: the right, left, and mean area of the jugular foramen; the posterior fossa volume; and the cerebellar volume on preoperative millimetric computed tomography scan slices in 31 children with an FGFR2 mutation (14 with Crouzon syndrome, 11 with Apert syndrome, and 6 with Pfeiffer syndrome). They were compared with 17 children without synostosis. All children were <24 months of age. We correlated all these measures with the presence of hydrocephalus or CTE.Results: We observed a significantly small FMA in children with Crouzon (P = .03) and in children with Pfeiffer (P = .05) resulting from a reduced sagittal diameter (P = .02 for Crouzon and P = .002 for Pfeiffer). Hydrocephalus was associated with small FMA (P = .02). The jugular foramen area, posterior fossa volume, and cerebellar volume were not associated with hydrocephalus or CTE. Hydrocephalus and CTE were statistically associated (P = .002).Conclusion: Hydrocephalus in FGFR2-related Crouzon and Pfeiffer syndromes is statistically associated with a small FMA. Hydrocephalus is statistically associated with CTE
    corecore