41 research outputs found

    Neonatal neurobehavioral abnormalities and MRI brain injury in encephalopathic newborns treated with hypothermia

    Get PDF
    Background Neonatal Encephalopathy (NE) is a prominent cause of infant mortality and neurodevelopmental disability. Hypothermia is an effective neuroprotective therapy for newborns with encephalopathy. Post-hypothermia functional–anatomical correlation between neonatal neurobehavioral abnormalities and brain injury findings on MRI in encephalopathic newborns has not been previously described. Aim To evaluate the relationship between neonatal neurobehavioral abnormalities and brain injury on magnetic resonance imaging (MRI) in encephalopathic newborns treated with therapeutic hypothermia. Study design Neonates with hypoxic ischemic encephalopathy (HIE) referred for therapeutic hypothermia were prospectively enrolled in this observational study. Neurobehavioral functioning was assessed with the NICU network neurobehavioral scale (NNNS) performed at target age 14 days. Brain injury was assessed by MRI at target age 7–10 days. NNNS scores were compared between infants with and without severe MRI injury. Subjects & outcome measures Sixty-eight term newborns (62% males) with moderate to severe encephalopathy underwent MRI at median 8 days (range 5–16) and NNNS at median 12 days of life (range 5–20). Fifteen (22%) had severe injury on MRI. Results Overall Total Motor Abnormality Score and individual summary scores for Non-optimal Reflexes and Asymmetry were higher, while Total NNNS Z-score across cognitive/behavioral domains was lower (reflecting poorer performance) in infants with severe MRI injury compared to those without (p \u3c 0.05). Conclusions Neonatal neurobehavioral abnormalities identified by the NNNS are associated with MRI brain injury in encephalopathic newborns post-hypothermia. The NNNS can provide an early functional assessment of structural brain injury in newborns, which may guide rehabilitative therapies in infants after perinatal brain injury

    Line Defects in Molybdenum Disulfide Layers

    Full text link
    Layered molecular materials and especially MoS2 are already accepted as promising candidates for nanoelectronics. In contrast to the bulk material, the observed electron mobility in single-layer MoS2 is unexpectedly low. Here we reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion domains, where the layer changes its direction through a line defect. The line defects are observed experimentally by atomic resolution TEM. The structures were modeled and the stability and electronic properties of the defects were calculated using quantum-mechanical calculations based on the Density-Functional Tight-Binding method. The results of these calculations indicate the occurrence of new states within the band gap of the semiconducting MoS2. The most stable non-stoichiometric defect structures are observed experimentally, one of which contains metallic Mo-Mo bonds and another one bridging S atoms

    Avalanche Dynamics in Evolution, Growth, and Depinning Models

    Full text link
    The dynamics of complex systems in nature often occurs in terms of punctuations, or avalanches, rather than following a smooth, gradual path. A comprehensive theory of avalanche dynamics in models of growth, interface depinning, and evolution is presented. Specifically, we include the Bak-Sneppen evolution model, the Sneppen interface depinning model, the Zaitsev flux creep model, invasion percolation, and several other depinning models into a unified treatment encompassing a large class of far from equilibrium processes. The formation of fractal structures, the appearance of 1/f1/f noise, diffusion with anomalous Hurst exponents, Levy flights, and punctuated equilibria can all be related to the same underlying avalanche dynamics. This dynamics can be represented as a fractal in dd spatial plus one temporal dimension. We develop a scaling theory that relates many of the critical exponents in this broad category of extremal models, representing different universality classes, to two basic exponents characterizing the fractal attractor. The exact equations and the derived set of scaling relations are consistent with numerical simulations of the above mentioned models.Comment: 27 pages in revtex, no figures included. Figures or hard copy of the manuscript supplied on reques

    Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress

    Get PDF
    Reduced choroidal blood flow and tissue changes in the ageing human eye impair oxygen delivery to photoreceptors and the retinal pigment epithelium. As a consequence, mild but chronic hypoxia may develop and disturb cell metabolism, function and ultimately survival, potentially contributing to retinal pathologies such as age-related macular degeneration (AMD). Here, we show that several hypoxia-inducible genes were expressed at higher levels in the aged human retina suggesting increased activity of hypoxia-inducible transcription factors (HIFs) during the physiological ageing process. To model chronically elevated HIF activity and investigate ensuing consequences for photoreceptors, we generated mice lacking von Hippel Lindau (VHL) protein in rods. This activated HIF transcription factors and led to a slowly progressing retinal degeneration in the ageing mouse retina. Importantly, this process depended mainly on HIF1 with only a minor contribution of HIF2. A gene therapy approach using AAV-mediated RNA interference through an anti-Hif1a shRNA significantly mitigated the degeneration suggesting a potential intervention strategy that may be applicable to human patients

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome
    corecore