635 research outputs found

    Evaluation of pollutant removal efficiency of a bioretention basin and implications for stormwater management in tropical cities

    Get PDF
    Non-point source pollution is a prevalent problem throughout the world. Bioretention basins have been deployed worldwide to treat stormwater runoff and alleviate eutrophication in downstream water resources. However, basin performance in the tropics is poorly understood. Given the distinctly different rainfall-runoff characteristics of tropical climates, whether basins that are built according to temperate design guidelines are effective is questionable. There have been no field studies based on continuous, high-resolution, long-term monitoring in the tropics. In this study, 96 storms were monitored in the first bioretention basin in Singapore. Of these, flow measurements were made during 80 events and samples were collected and analyzed for 15 water quality parameters (including nitrogen and phosphorus species, total suspended solids, and chemical oxygen demand) during six events. The mean removal rates were 25%, 46%, and 53% for total nitrogen, total phosphorus, and total suspended solids respectively. Results show that a lack of storage capacity and resulting high overflow reduce pollutant removal efficiency for high-rainfall-depth events. The transition from efficient to non-efficient removal occurs at a rainfall depth between 10 and 30 mm. Low EMC (event mean concentration) and weak first flush as a result of frequent and intense rainfall in the tropics also contribute to low removal rate. The results suggest a need to revise bioretention basin design guidelines for the tropics to be based on WQV or WQD (water quality volume or depth) instead of ARI (average recurrence interval). A larger basin volume (WQD between 10 to 30 mm) is recommended.Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and Modeling

    A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe

    Get PDF
    The TTAA-specific transposon piggyBac (PB), originally isolated from the cabbage looper moth, Trichoplusia ni, has been utilized as an insertional mutagenesis tool in various eukaryotic organisms. Here, we show that PB transposes in the fission yeast Schizosaccharomyces pombe and leaves almost no footprints. We developed a PB-based mutagenesis system for S. pombe by constructing a strain with a selectable transposon excision marker and an integrated transposase gene. PB transposition in this strain has low chromosomal distribution bias as shown by deep sequencing-based insertion site mapping. Using this system, we obtained loss-of-function alleles of klp5 and klp6, and a gain-of-function allele of dam1 from a screen for mutants resistant to the microtubule-destabilizing drug thiabendazole. From another screen for cdc25-22 suppressors, we obtained multiple alleles of wee1 as expected. The success of these two screens demonstrated the usefulness of this PB-mediated mutagenesis tool for fission yeast

    Genome-wide Runx2 occupancy in prostate cancer cells suggests a role in regulating secretion

    Get PDF
    Runx2 is a metastatic transcription factor (TF) increasingly expressed during prostate cancer (PCa) progression. Using PCa cells conditionally expressing Runx2, we previously identified Runx2-regulated genes with known roles in epithelial–mesenchymal transition, invasiveness, angiogenesis, extracellular matrix proteolysis and osteolysis. To map Runx2-occupied regions (R2ORs) in PCa cells, we first analyzed regions predicted to bind Runx2 based on the expression data, and found that recruitment to sites upstream of the KLK2 and CSF2 genes was cyclical over time. Genome-wide ChIP-seq analysis at a time of maximum occupancy at these sites revealed 1603 high-confidence R2ORs, enriched with cognate motifs for RUNX, GATA and ETS TFs. The R2ORs were distributed with little regard to annotated transcription start sites (TSSs), mainly in introns and intergenic regions. Runx2-upregulated genes, however, displayed enrichment for R2ORs within 40 kb of their TSSs. The main annotated functions enriched in 98 Runx2-upregulated genes with nearby R2ORs were related to invasiveness and membrane trafficking/secretion. Indeed, using SDS–PAGE, mass spectrometry and western analyses, we show that Runx2 enhances secretion of several proteins, including fatty acid synthase and metastasis-associated laminins. Thus, combined analysis of Runx2's transcriptome and genomic occupancy in PCa cells lead to defining its novel role in regulating protein secretion

    Pathophysiology of the Belgrade rat

    Get PDF
    The Belgrade rat is an animal model of divalent metal transporter 1 (DMT1) deficiency. This strain originates from an X-irradiation experiment first reported in 1966. Since then, the Belgrade rat’s pathophysiology has helped to reveal the importance of iron balance and the role of DMT1. This review discusses our current understanding of iron transport homeostasis and summarizes molecular details of DMT1 function. We describe how studies of the Belgrade rat have revealed key roles for DMT1 in iron distribution to red blood cells as well as duodenal iron absorption. The Belgrade rat’s pathology has extended our knowledge of hepatic iron handling, pulmonary and olfactory iron transport as well as brain iron uptake and renal iron handling. For example, relationships between iron and manganese metabolism have been discerned since both are essential metals transported by DMT1. Pathophysiologic features of the Belgrade rat provide us with a unique and interesting animal model to understand iron homeostasis

    Pinacol Rearrangement and Direct Nucleophilic Substitution of Allylic Alcohols Promoted by Graphene Oxide and Graphene Oxide CO2H

    Get PDF
    Graphene oxide (GO) and carboxylic acid functionalized GO (GO–CO2H) have been found to efficiently promote the heterogeneous and environmentally friendly pinacol rearrangement of 1,2-diols and the direct nucleophilic substitution of allylic alcohols. In general, high yields and regioselectivities are obtained in both reactions using 20 wt % of catalyst loading and mild reaction conditions.Financial support from the University of Alicante (UAUSTI16-03, VIGROB-173), and Spanish Ministerio de Economía y Competitividad (CTQ2015-66624-P) is acknowledged

    Thymoquinone Inhibits Bone Metastasis of Breast Cancer Cells Through Abrogation of the CXCR4 Signaling Axis

    Get PDF
    Overexpression of chemokine receptor type 4 (CXCR4) has been found to be associated with increased cell proliferation, metastasis and also act as an indicator of poor prognosis in patients with breast cancer. Therefore, new agents that can abrogate CXCR4 expression have potential against breast cancer metastasis. In this study, we examined the potential effect of thymoquinone (TQ), derived from the seeds of Nigella sativa, on the expression and regulation of CXCR4 in breast cancer cells. TQ was found to inhibit the expression of CXCR4 in MDA-MB-231 triple negative breast cancer (TNBC) cells in a dose- and time-dependent manner. It was noted that suppression of CXCR4 by TQ was possibly transcriptionally regulated, as treatment with this drug caused down-regulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) activation and suppression of NF-kB binding to the CXCR4 promoter. Pretreatment with a proteasome inhibitor and/or lysosomal stabilization did not affect TQ induced suppression of CXCR4. Down-regulation of CXCR4 was further correlated with the inhibition of CXCL12-mediated migration and invasion of MDA-MB-231 cells. Interestingly, it was observed that the deletion of p65 could reverse the observed antiinvasive/ anti-migratory effects of TQ in breast cancer cells. TQ also dose-dependently inhibited MDA-MB-231 tumor growth and tumor vascularity in a chick chorioallantoic membrane assay model. We also observed TQ (2 and 4 mg/kg) treatment significantly suppressed multiple lung, brain, and bone metastases in a dose-dependent manner in a metastasis breast cancer mouse model. Interestingly, H&E and immunohistochemical analysis of bone isolated from TQ treated mice indicated a reduction in number of osteolytic lesions and the expression of metastatic biomarkers. In conclusion, the results indicate that TQ primarily exerts its anti-metastatic effects by down-regulation of NF-kB regulated CXCR4 expression and thus has potential for the treatment of breast cancer

    Tissue Transglutaminase Promotes Drug Resistance and Invasion by Inducing Mesenchymal Transition in Mammary Epithelial Cells

    Get PDF
    Recent observations that aberrant expression of tissue transglutaminase (TG2) promotes growth, survival, and metastasis of multiple tumor types is of great significance and could yield novel therapeutic targets for improved patient outcomes. To accomplish this, a clear understanding of how TG2 contributes to these phenotypes is essential. Using mammary epithelial cell lines (MCF10A, MCF12A, MCF7 and MCF7/RT) as a model system, we determined the impact of TG2 expression on cell growth, cell survival, invasion, and differentiation. Our results show that TG2 expression promotes drug resistance and invasive functions by inducing epithelial-mesenchymal transition (EMT). Thus, TG2 expression supported anchorage-independent growth of mammary epithelial cells in soft-agar, disrupted the apical-basal polarity, and resulted in disorganized acini structures when grown in 3D-culture. At molecular level, TG2 expression resulted in loss of E-cadherin and increased the expression of various transcriptional repressors (Snail1, Zeb1, Zeb2 and Twist1). Tumor growth factor-beta (TGF-β) failed to induce EMT in cells lacking TG2 expression, suggesting that TG2 is a downstream effector of TGF-β-induced EMT. Moreover, TG2 expression induced stem cell-like phenotype in mammary epithelial cells as revealed by enrichment of CD44+/CD24-/low cell populations. Overall, our studies show that aberrant expression of TG2 is sufficient for inducing EMT in epithelial cells and establish a strong link between TG2 expression and progression of metastatic breast disease

    Impaired Iron Status in Aging Research

    Get PDF
    Aging is associated with disturbances in iron metabolism and storage. During the last decade, remarkable progress has been made toward understanding their cellular and molecular mechanisms in aging and age-associated diseases using both cultured cells and animal models. The field has moved beyond descriptive studies to potential intervention studies focusing on iron chelation and removal. However, some findings remain controversial and inconsistent. This review summarizes important features of iron dyshomeostasis in aging research with a particular emphasis on current knowledge of the mechanisms underlying age-associated disorders in rodent models

    A common variant near TGFBR3 is associated with primary open angle glaucoma

    Get PDF
    Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis
    corecore