397 research outputs found

    Surface scattering mechanisms of tantalum nitride thin film resistor

    Get PDF
    In this letter, we utilize an electrical analysis method to develop a TaN thin film resistor with a stricter spec and near-zero temperature coefficient of resistance (TCR) for car-used electronic applications. Simultaneously, we also propose a physical mechanism mode to explain the origin of near-zero TCR for the TaN thin film resistor (TFR). Through current fitting, the carrier conduction mechanism of the TaN TFR changes from hopping to surface scattering and finally to ohmic conduction for different TaN TFRs with different TaN microstructures. Experimental data of current–voltage measurement under successive increasing temperature confirm the conduction mechanism transition. A model of TaN grain boundary isolation ability is eventually proposed to influence the carrier transport in the TaN thin film resistor, which causes different current conduction mechanisms

    Emerged HA and NA Mutants of the Pandemic Influenza H1N1 Viruses with Increasing Epidemiological Significance in Taipei and Kaohsiung, Taiwan, 2009–10

    Get PDF
    The 2009 influenza pandemic provided an opportunity to observe dynamic changes of the hemagglutinin (HA) and neuraminidase (NA) of pH1N1 strains that spread in two metropolitan areas -Taipei and Kaohsiung. We observed cumulative increases of amino acid substitutions of both HA and NA that were higher in the post–peak than in the pre-peak period of the epidemic. About 14.94% and 3.44% of 174 isolates had one and two amino acids changes, respective, in the four antigenic sites. One unique adaptive mutation of HA2 (E374K) was first detected three weeks before the epidemic peak. This mutation evolved through the epidemic, and finally emerged as the major circulated strain, with significantly higher frequency in the post-peak period than in the pre-peak (64.65% vs 9.28%, p<0.0001). E374K persisted until ten months post-nationwide vaccination without further antigenic changes (e.g. prior to the highest selective pressure). In public health measures, the epidemic peaked at seven weeks after oseltamivir treatment was initiated. The emerging E374K mutants spread before the first peak of school class suspension, extended their survival in high-density population areas before vaccination, dominated in the second wave of class suspension, and were fixed as herd immunity developed. The tempo-spatial spreading of E374K mutants was more concentrated during the post–peak (p = 0.000004) in seven districts with higher spatial clusters (p<0.001). This is the first study examining viral changes during the naïve phase of a pandemic of influenza through integrated virological/serological/clinical surveillance, tempo-spatial analysis, and intervention policies. The vaccination increased the percentage of E374K mutants (22.86% vs 72.34%, p<0.001) and significantly elevated the frequency of mutations in Sa antigenic site (2.36% vs 23.40%, p<0.001). Future pre-vaccination public health efforts should monitor amino acids of HA and NA of pandemic influenza viruses isolated at exponential and peak phases in areas with high cluster cases

    Using Capacitance Sensor to Extract Characteristic Signals of Dozing from Skin Surface

    Get PDF
    Skin is the largest organ of the human body and a physiological structure that is directly exposed to the environment. From a theoretical perspective, numerous physiological and psychological signals use the skin as a medium for input and output with the outside world. Therefore, the skin is considered an optimal signal interception point when developing noninvasive, direct, and rapid signal exploration devices. To date, skin signal interceptions are predominantly performed by measuring skin impedance. However, this method is prone to interference such as sweat secretion, salt accumulation on the skin, and muscle contractions, which may result in a substantial amount of interference and erroneous results. The present study proposes novel and effective methods for skin signal interception, such as using a nested probe as a sensor to measure capacitance to be further processed as physiological and psychological signals. The experimental results indicate that the capacitance curve for the transition between wakefulness and dozing exhibits significant changes. This change in the curve can be analyzed by computer programs to clearly and rapidly determine whether the subject has entered the initial phases of sleep

    The Torso signaling pathway modulates a dual transcriptional switch to regulate tailless expression

    Get PDF
    The Torso (Tor) signaling pathway activates tailless (tll) expression by relieving tll repression. None of the repressors identified so far, such as Capicuo, Groucho and Tramtrack69 (Ttk69), bind to the tor response element (tor-RE) or fully elucidate tll repression. In this study, an expanded tll expression pattern was shown in embryos with reduced heat shock factor (hsf) and Trithorax-like (Trl) activities. The GAGA factor, GAF encoded by Trl, bound weakly to the tor-RE, and this binding was enhanced by both Hsf and Ttk69. A similar extent of expansion of tll expression was observed in embryos with simultaneous knockdown of hsf, Trl and ttk69 activities, and in embryos with constitutively active Tor. Hsf is a substrate of mitogen-activated protein kinase and S378 is the major phosphorylation site. Phosphorylation converts Hsf from a repressor to an activator that works with GAF to activate tll expression. In conclusion, the GAF/Hsf/Ttk69 complex binding to the tor-RE remodels local chromatin structure to repress tll expression and the Tor signaling pathway activate tll expression by modulating a dual transcriptional switch

    Self-assembly enables simple structure organic photovoltaics via green-solvent and open-air-printing: Closing the lab-to-fab gap

    Get PDF
    The ultimate goal of organic solar cells (OSCs) is to deliver cheap, stable, efficient, scalable, and eco-friendly solar-to-power products contributing to the global carbon neutral. However, simultaneously balancing these five critical factors of OSCs toward commercialization is extremely challenging. Herein, a green-solvent-processable and open-air-printable self-assembly strategy is demonstrated to synchronously simplify the device architecture, improve the power conversion efficiency (PCE) and enhance the shelf, thermal as well as light illumination stability of OSCs. The cathode interlayer (CIL)-free self-assembled OSCs exhibit the PCE of 15.5%, higher than that of traditional inverted OSCs of 13.0%, which is among the top values for both CIL-free self-assembled OSCs and open-air blade-coated bulk-heterojunction OSCs. The remarkable enhancements are mainly ascribed to the finely selfassembly, subtly controlled donor/acceptor aggregation rate, and delicately manipulated vertical morphology. Besides, this strategy enables 13.2% efficiency on device area of 0.98 cm(2), implying its potential for scalability. These findings demonstrate that this strategy can close the lab-to-fab gap of OSCs toward commercialized cheap, stable, efficient, scalable, and eco-friendly OSCs

    The Adhesion G Protein-Coupled Receptor GPR97/ADGRG3 Is Expressed in Human Granulocytes and Triggers Antimicrobial Effector Functions

    Get PDF
    The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in human, several of which are distinctly expressed and functionally involved in polymorphonuclear cells (PMNs). As former work indicated the possible presence of the aGPCR GPR97 in granulocytes, we studied its cellular distribution, molecular structure, signal transduction, and biological function in PMNs. RNA sequencing and mass-spectrometry revealed abundant RNA and protein expression of ADGRG3/GPR97 in granulocyte precursors and terminally differentiated neutrophilic, eosinophilic, and basophilic granulocytes. Using a newly generated GPR97-specific monoclonal antibody, we confirmed that endogenous GPR97 is a proteolytically processed, dichotomous, N-glycosylated receptor. GPR97 was detected in tissue-infiltrating PMNs and upregulated during systemic inflammation. Antibody ligation of GPR97 increased neutrophil reactive oxygen species production and proteolytic enzyme activity, which is accompanied by an increase in mitogen-activated protein kinases and IκBα phosphorylation. In-depth analysis of the GPR97 signaling cascade revealed a possible switch from basal Gαs/cAMP-mediated signal transduction to a Gαi-induced reduction in cAMP levels upon mutation-induced activation of the receptor, in combination with an increase in downstream effectors of Gβγ, such as SRE and NF-κB. Finally, ligation of GPR97 increased the bacteria uptake and killing activity of neutrophils. We conclude that the specific presence of GPR97 regulates antimicrobial activity in human granulocytes

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Metronomic chemotherapy prevents therapy-induced stromal activation and induction of tumor-initiating cells

    Full text link
    Although traditional chemotherapy kills a fraction of tumor cells, it also activates the stroma and can promote the growth and survival of residual cancer cells to foster tumor recurrence and metastasis. Accordingly, overcoming the host response induced by chemotherapy could substantially improve therapeutic outcome and patient survival. In this study, resistance to treatment and metastasis has been attributed to expansion of stem-like tumor-initiating cells (TICs). Molecular analysis of the tumor stroma in neoadjuvant chemotherapy–treated human desmoplastic cancers and orthotopic tumor xenografts revealed that traditional maximum-tolerated dose chemotherapy, regardless of the agents used, induces persistent STAT-1 and NF-κB activity in carcinoma-associated fibroblasts. This induction results in the expression and secretion of ELR motif–positive (ELR(+)) chemokines, which signal through CXCR-2 on carcinoma cells to trigger their phenotypic conversion into TICs and promote their invasive behaviors, leading to paradoxical tumor aggression after therapy. In contrast, the same overall dose administered as a low-dose metronomic chemotherapy regimen largely prevented therapy-induced stromal ELR(+) chemokine paracrine signaling, thus enhancing treatment response and extending survival of mice carrying desmoplastic cancers. These experiments illustrate the importance of stroma in cancer therapy and how its impact on treatment resistance could be tempered by altering the dosing schedule of systemic chemotherapy

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe
    corecore