702 research outputs found

    Development of the Next Generation of Meteoroid and Orbital Debris Shields

    Get PDF
    The novel structure of metallic foams is of interest in the design of next-generation debris shields as it introduces physical mechanisms that are advantageous to hypervelocity impact shielding (e.g. increased fragmentation/melt/vaporization, energy dissipation, etc.). Preliminary investigations have shown improved shielding capability over traditional spacecraft primary structures. In this paper, the results of a current hypervelocity impact test program on metallic open-cell foam core sandwich panels are reported. A preliminary ballistic limit equation has been derived from the experimental results, and is presented in a form suitable for implementation in risk assessment software codes

    Spatial variation in directional swimming enables juvenile sea turtles to reach and remain in productive waters

    Get PDF
    Ocean currents play an important role in the movement and distribution of organisms and for small animals it is often assumed that their movements in the ocean are determined by passive drift. Here we challenge this assumption by conducting an experiment at the scale of an entire ocean basin to test whether small (∼35 cm) juvenile loggerhead sea turtles Caretta caretta move independently of ocean currents. By comparing the trajectories of 46 satellite tracked turtles (11502 positions, 12850 tracking days) with Lagrangian drifters (3716303 positions, 927529 tracking days) and virtual particles tracked within the Hybrid Coordinate Ocean Model (HYCOM), we found that in certain areas turtles moved in a similar manner to ocean currents, but in other areas turtle movement was markedly different from ocean currents, with turtles moving to areas thousands of kilometres from where they would have drifted passively. We further found that turtles were distributed in more-productive areas than would be expected if their movement depended on passive transport only. These findings demonstrate that regional variation in directional swimming contributes to young sea turtles reaching more favourable developmental habitats and supports laboratory work suggesting that young turtles have a map sense to determine their location in a seemingly featureless ocean

    Testing the validity of the proposed ICD-11 PTSDand complex PTSD criteria using a sample fromNorthern Uganda

    Get PDF
    Background: The International Classification of Diseases (ICD-11) is currently under development with proposed changes recommended for the posttraumatic stress disorder (PTSD) diagnosis and the inclusion of a separate complex PTSD (CPTSD) disorder. Empirical studies support the distinction between PTSD and CPTSD; however, less research has focused on non-western populations. Objective: The aim of this study was to investigate whether distinct PTSD and CPTSD symptom classes emerged and to identify potential risk factors and the severity of impairment associated with resultant classes. Methods: A latent class analysis (LCA) and related analyses were conducted on 314 young adults from Northern Uganda. Fifty-one percent were female and participants were aged between 18 and 25 years. Forty percent of the participants were former child soldiers (n=124) while the remaining participants were civilians (n=190). Results: The LCA revealed three classes: a CPTSD class (40.2%), a PTSD class (43.8%), and a low symptom class (16%). Child soldier status was a significant predictor of both CPTSD and PTSD classes (OR=5.96 and 2.82, respectively). Classes differed significantly on measures of anxiety/depression, conduct problems, somatic complaints, and war experiences. Conclusions: To conclude, this study provides preliminary support for the proposed distinction between PTSD and CPTSD in a young adult sample from Northern Uganda. However, future studies are needed using larger samples to test alternative models before firm conclusions can be made

    Stability of the lattice formed in first-order phase transitions to matter containing strangeness in protoneutron stars

    Full text link
    Well into the deleptonization phase of a core collapse supernova, a first-order phase transition to matter with macroscopic strangeness content is assumed to occur and lead to a structured lattice defined by negatively charged strange droplets. The lattice is shown to crystallize for expected droplet charges and separations at temperatures typically obtained during the protoneutronstar evolution. The melting curve of the lattice for small spherical droplets is presented. The one-component plasma model proves to be an adequate description for the lattice in its solid phase with deformation modes freezing out around the melting temperature. The mechanical stability against shear stresses is such that velocities predicted for convective phenomena and differential rotation during the Kelvin-Helmholtz cooling phase might prevent the crystallization of the phase transition lattice. A solid lattice might be fractured by transient convection, which could result in anisotropic neutrino transport. The melting curve of the lattice is relevant for the mechanical evolution of the protoneutronstar and therefore should be included in future hydrodynamics simulations.Comment: accepted for publication in Physical Review

    On the Precision of a Length Measurement

    Get PDF
    We show that quantum mechanics and general relativity imply the existence of a minimal length. To be more precise, we show that no operational device subject to quantum mechanics, general relativity and causality could exclude the discreteness of spacetime on lengths shorter than the Planck length. We then consider the fundamental limit coming from quantum mechanics, general relativity and causality on the precision of the measurement of a length.Comment: 5 pages, to appear in the proceedings of the 2006 International School of Subnuclear Physics in Erice and in ''Young Scientists'' online-only supplement of the European Physical Journal C-Direct (Springer

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure

    Monolingual Biases in Simulations of Cultural Transmission

    No full text
    Recent research suggests that the evolution of language is affected by the inductive biases of its learners. I suggest that there is an implicit assumption that one of these biases is to expect a single linguistic system in the input. Given the prevalence of bilingual cultures, this may not be a valid abstraction. This is illustrated by demonstrating that the ‘minimal naming game’ model, in which a shared lexicon evolves in a population of agents, includes an implicit mutual exclusivity bias. Since recent research suggests that children raised in bilingual cultures do not exhibit mutual exclusivity, the individual learning algorithm of the agents is not as abstract as it appears to be. A modification of this model demonstrates that communicative success can be achieved without mutual exclusivity. It is concluded that complex cultural phenomena, such as bilingualism, do not necessarily result from complex individual learning mechanisms. Rather, the cultural process itself can bring about this complexity

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
    corecore