278 research outputs found

    Governance of the circular economy: a comparative examination of the use of standards by China and the United Kingdom

    Get PDF
    Wastes, like other materials, have become increasingly global in their flows. The circular economy (CE) is a multi-level sustainability transition linked to the global trade in waste. China has long been a key trading partner for the West’s waste materials. However, its rethinking of the quality of traded recyclable materials has triggered a crisis in the global governance of waste flows. We utilise a Sociology of Knowledge approach to undertake comparative work to better understand how different governance arrangements may facilitate or constrain the unfolding of a CE transition. The UK and China were selected as models of liberal and authoritarian environmental governance respectively. A mixed-method approach was pursued using qualitative interviews with key stakeholders and analysis of quantitative and qualitative data from secondary sources. Thematic analysis is organised around: perceptions of the circular economy, meanings of standards, and perspectives on trade and materials

    Weakened growth of cropland‐N2O emissions in China associated with nationwide policy interventions

    Get PDF
    This study was supported by the National Natural Science Foundation of China (41671464; 7181101181), the National Key Research and Development Program of China (2016YFD0800501; 2018YFC0213304), 111 Project (B14001), the GCP-INI Global N2O Budget and the INMS Asia Demo Activities. The input of P.S. contributes to the UK-China Virtual Joint Centre on Nitrogen ìN-Circleî funded by the Newton Fund via UK BBSRC/NERC (BB/N013484/1). We acknowledged Eric Ceschia, Kristiina Regina, Dario Papale, and the NANORP for sharing a part of observation data.Peer reviewedPostprin

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    Index decomposition analysis of urban crop water footprint

    Get PDF
    Rapid urbanization has resulted in often unplanned increases in population, and food demand in cities. Historically, hinterlands to these cities have acted as breadbaskets producing food to the urban residents. Accordingly, a large amount of available freshwater has been needed to support these croplands. However, the rapid expansion of cities in developing countries has significantly changed both the croplands around cities and the water demand. It is thus important to quantitatively investigate the water-food nexus of cities related to the changing hinterland agriculture. Water footprint is an indicator reflecting the human impact on water. In this study, we quantified both the blue and green water footprint of major crop products in Suzhou city, China using a bottom-up accounting method. A novel decomposition analysis was carried out with a Logarithmic Mean Divisia Index (LMDI) method to study the driving forces that changed the water footprint during the period 2001-2010. The drivers were designed to reflect the factors related to farmland, such as yield and crop area. This is different from previous decomposition analyses, which focused on economic factors such as GDP. The results show that the crop water footprint of Suzhou city has seen a general decreasing trend between 2001 and 2010. The decomposition analysis showed that the decline of crop area was the main driver that decreased the crop water footprint, followed by the virtual water content (water consumption per unit of production). In contrast the changes of crop combination and yield contributed to an increase in the crop water footprint. Although the shrink of urban croplands decreased the water footprint of crop products. Cities’ increasing demand for food will increase the crop water footprint of consumption. This will increase the dependence of cities on external water footprint of crop products (water embodied in imported crops), which may impact upon food security in cities in the long term

    Methodology and applications of city level CO2 emission accounts in China

    Get PDF
    China is the world's largest energy consumer and CO2 emitter. Cities contribute 85% of the total CO2 emissions in China and thus are considered as the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. However, the emission inventory construction of Chinese cities has not been well researched, mainly owing to the lack of systematic statistics and poor data quality. Focusing on this research gap, we developed a set of methods for constructing CO2 emissions inventories for Chinese cities based on energy balance table. The newly constructed emission inventory is compiled in terms of the definition provided by the IPCC territorial emission accounting approach and covers 47 socioeconomic sectors, 17 fossil fuels and 9 primary industry products, which is corresponding with the national and provincial inventory. In the study, we applied the methods to compile CO2 emissions inventories for 24 common Chinese cities and examined uncertainties of the inventories. Understanding the emissions sources in Chinese cities is the basis for many climate policy and goal research in the future

    Perceptions of malaria control and prevention in an era of climate change: a cross-sectional survey among CDC staff in China

    Get PDF
    Published online: 31 March 2017Background: Though there was the significant decrease in the incidence of malaria in central and southwest China during the 1980s and 1990s, there has been a re-emergence of malaria since 2000. Methods: A cross-sectional survey was conducted amongst the staff of eleven Centers for Disease Control and Prevention (CDC) in China to gauge their perceptions regarding the impacts of climate change on malaria transmission and its control and prevention. Descriptive analysis was performed to study CDC staff’s knowledge, attitudes, perceptions and suggestions for malaria control in the face of climate change. Results: A majority (79.8%) of CDC staff were concerned about climate change and 79.7% believed the weather was becoming warmer. Most participants (90.3%) indicated climate change had a negative effect on population health, 92.6 and 86.8% considered that increasing temperatures and precipitation would influence the transmission of vector-borne diseases including malaria. About half (50.9%) of the surveyed staff indicated malaria had re-emerged in recent years, and some outbreaks were occurring in new geographic areas. The main reasons for such re-emergence were perceived to be: mosquitoes in high-density, numerous imported cases, climate change, poor environmental conditions, internal migrant populations, and lack of health awareness. Conclusions: This study found most CDC staff endorsed the statement that climate change had a negative impact on infectious disease transmission. Malaria had re-emerged in some areas of China, and most of the staff believed that this can be managed. However, high densities of mosquitoes and the continuous increase in imported cases of malaria in local areas, together with environmental changes are bringing about critical challenges to malaria control in China. This study contributes to an understanding of climate change related perceptions of malaria control and prevention amongst CDC staff. It may help to formulate in-house training guidelines, community health promotion programmes and policies to improve the capacity of malaria control and prevention in the face of climate change in China.Michael Xiaoliang Tong, Alana Hansen, Scott Hanson, Easey, Scott Cameron, Jianjun Xiang, Qiyong Liu, Xiaobo Liu, Yehuan Sun, Philip Weinstein, Gil, Soo Han, Craig Williams and Peng B

    Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations From Emission Changes in China

    Get PDF
    Air pollution exposure remains a leading public health problem in China. The use of chemical transport models to quantify the impacts of various emission changes on air quality is limited by their large computational demands. Machine learning models can emulate chemical transport models to provide computationally efficient predictions of outputs based on statistical associations with inputs. We developed novel emulators relating emission changes in five key anthropogenic sectors (residential, industry, land transport, agriculture, and power generation) to winter ambient fine particulate matter (PM2.5) concentrations across China. The emulators were optimized based on Gaussian process regressors with Matern kernels. The emulators predicted 99.9% of the variance in PM2.5 concentrations for a given input configuration of emission changes. PM2.5 concentrations are primarily sensitive to residential (51%–94% of first‐order sensitivity index), industrial (7%–31%), and agricultural emissions (0%–24%). Sensitivities of PM2.5 concentrations to land transport and power generation emissions are all under 5%, except in South West China where land transport emissions contributed 13%. The largest reduction in winter PM2.5 exposure for changes in the five emission sectors is by 68%–81%, down to 15.3–25.9 μg m−3, remaining above the World Health Organization annual guideline of 10 μg m−3. The greatest reductions in PM2.5 exposure are driven by reducing residential and industrial emissions, emphasizing the importance of emission reductions in these key sectors. We show that the annual National Air Quality Target of 35 μg m−3 is unlikely to be achieved during winter without strong emission reductions from the residential and industrial sectors
    corecore