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Abstract:

China has experienced rapid agricultural development over recent 
decades, accompanied by increased fertilizer consumption in croplands, 
yet the trend and drivers of the associated nitrous oxide (N2O) emissions 
remain uncertain. The primary sources of this uncertainty are the coarse 
spatial variation of activity data and the incomplete model representation 
of N2O emissions in response to agricultural management. Here we 
provide new data-driven estimates of cropland N2O emissions across 
China in 1990-2014, compiled using a global cropland-N2O flux 
observation dataset, nationwide survey-based reconstruction of N-
fertilization and irrigation, and an updated nonlinear model. In addition, 
we have evaluated the drivers behind changing cropland N2O patterns 
using an index decomposition analysis approach. We find that China’s 
annual cropland-N2O emissions increased on average by 11.2 Gg N 
yr2 (P < 0.001) from 1990 to 2003, after which emissions plateaued 
until 2014 (2.8 Gg N yr2, P = 0.02), consistent with the output from 
an ensemble of process-based terrestrial biosphere models (TBMs). The 
slowdown of the increase in cropland-N2O emissions after 2003 was 
pervasive across two thirds of China’s sowing areas. This change was 
mainly driven by the nationwide reduction of N-fertilizer applied per 
area, partially due to the prevalence of the Nationwide Soil Testing and 
Formulation Fertilization Program that was launched in the early 2000s. 
This reduction has almost offset the N2O emissions induced by policy-
driven expansion of sowing areas, particularly in the Northeast Plain and 
the lower Yangtze River Basin. Our results underline the importance of 
high-resolution activity data and adoption of nonlinear model of N2O 
emission for capturing cropland-N2O emission changes. Improving the 
representation of policy interventions is also recommended for future 
projections.
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37 ABSTRACT

38 China has experienced rapid agricultural development over recent decades, accompanied by 

39 increased fertilizer consumption in croplands, yet the trend and drivers of the associated nitrous 

40 oxide (N2O) emissions remain uncertain. The primary sources of this uncertainty are the coarse 

41 spatial variation of activity data and the incomplete model representation of N2O emissions in 

42 response to agricultural management. Here we provide new data-driven estimates of cropland 

43 N2O emissions across China in 1990-2014, compiled using a global cropland-N2O flux 

44 observation dataset, nationwide survey-based reconstruction of N-fertilization and irrigation, 

45 and an updated nonlinear model. In addition, we have evaluated the drivers behind changing 

46 cropland N2O patterns using an index decomposition analysis approach. We find that China�s 

47 annual cropland-N2O emissions increased on average by 11.2 Gg N yr�2 (P < 0.001) from 1990 

48 to 2003, after which emissions plateaued until 2014 (2.8 Gg N yr�2, P = 0.02), consistent with 

49 the output from an ensemble of process-based terrestrial biosphere models (TBMs). The 

50 slowdown of the increase in cropland-N2O emissions after 2003 was pervasive across two 

51 thirds of China�s sowing areas. This change was mainly driven by the nationwide reduction of 

52 N-fertilizer applied per area, partially due to the prevalence of the Nationwide Soil Testing and 

53 Formulation Fertilization Program that was launched in the early 2000s. This reduction has 

54 almost offset the N2O emissions induced by policy-driven expansion of sowing areas, 

55 particularly in the Northeast Plain and the lower Yangtze River Basin. Our results underline 

56 the importance of high-resolution activity data and adoption of nonlinear model of N2O 

57 emission for capturing cropland-N2O emission changes. Improving the representation of policy 

58 interventions is also recommended for future projections.
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61 1. Introduction

62 Nitrous oxide (N2O) is a potent greenhouse gas, with a global warming potential 265~298 times 

63 greater than that of CO2 over a 100-year time horizon (Myhre et al., 2013). Its emissions are 

64 recognized as the most important ozone-depleting substance (Ravishankara, Daniel, & 

65 Portmann, 2009). Accumulating evidence points to croplands as the largest global source 

66 (>40%) of anthropogenic N2O (Paustian et al., 2016). Global cropland N2O emissions are 

67 projected to increase by ~50% from 2010 to 2050, due to the future intensification and 

68 expansion of cropland production (Alexandratos & Bruinsma, 2012). Reducing cropland N2O 

69 emissions is a key mitigation option for limiting climate warming, especially in relation to 

70 recently developed policy objectives relating to climate change and concerns regarding ozone 

71 depletion (Allen et al. 2018). However, high spatial and temporal variability makes the 

72 estimation of cropland N2O emissions notoriously difficult (e.g., quantity, pattern, trend) 

73 (Paustian et al., 2016), resulting in large discrepancies between bottom-up and top-down 

74 approaches (Tian et al., 2016).

75

76 One of the sources of uncertainty is the model structure of bottom-up approaches that consider 

77 a linear response of N2O emissions to N application rate, as recommended in the Tier 1 method 

78 for a national N2O inventory by the Intergovernmental Panel on Climate Change (IPCC, 2006).  

79 Recent synthesis of field observations suggests that N2O emissions respond nonlinearly to an 

80 increasing N application rate (Philibert, Loyce, & Makowski, 2012; Shcherbak, Millar, & 

81 Robertson, 2014; Song et al. 2018) This nonlinear response was partially ascribed to the fact 

82 that high ammonium ion concentrations from urea hydrolysis inhibits nitrite transformation to 

83 nitrate (Ma, Shan, & Yan, 2015), resulting in nitrite accumulation which is subsequently 

84 emitted as N2O. Philibert et al. (2012) proposed a nonlinear model with fixed parameters, which 

85 improved the predictive performance of N2O flux. This model was further improved by using 
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86 random parameters from a more recent and a larger field observation dataset of N2O flux 

87 (Gerber et al., 2016). In addition to the nonlinear response of emissions to N inputs, 

88 microbially-mediated N2O is also strongly dependent on climate and soil properties (Perlman, 

89 Hijmans, & Horwath, 2014). A spatially-referenced nonlinear model was therefore developed 

90 to simulate N2O emissions in response to fertilizer N application rate (Nrate) under various 

91 environmental or management-related conditions (Zhou et al., 2015). Comparison between 

92 models showed that such models outperformed nonlinear models with fixed or random 

93 parameters (Zhou et al., 2015). 

94

95 The accuracy of simulating N2O emissions is dependent on the representation of model 

96 parameters and the spatial aggregation of agricultural activity data. For example, a spatially-

97 referenced nonlinear model (Zhou et al., 2015) calibrated against observations in China was 

98 able to better capture the variations of N2O emissions on sites with similar conditions to the 

99 calibration dataset, but was unable to reproduce emissions at other sites. To improve the 

100 performance of diagnostic models at a regional scale, field observations representative of a 

101 wide range of environmental and management-related variables are required. In addition, N2O 

102 emission models are sensitive to the degree of spatial aggregation in fertilizer and irrigation 

103 data. Uncertainty of input data is expected to increase with decreasing spatial scale without 

104 altering spatial differences in fertilizer and irrigation applications (Gerber et al., 2016). 

105 Although the spatial resolution of management-related data is improving, mainly by evenly 

106 disaggregating national-scale data into gridded maps (Lu & Tian, 2017; Zhang et al., 2017), 

107 long-term, high-resolution maps of cropland-specific N-fertilizers and irrigation inputs are not 

108 yet available at the global or regional scale.

109

110 China is currently the largest emitters of anthropogenic N2O emissions globally (Zhou et al., 
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111 2014). Over the past decades, this source in China increased with N-fertilizer use, accounting 

112 for over 20% of global cropland-N2O emissions from IPCC Tier 1 inventories (FAO, 2018; 

113 Janssens-Maenhout et al., 2019; Winiwarter, Höglund-Isaksson, Klimont, Schöpp, & Amann, 

114 2018). China is a large country with contrasting crop production systems, climate and soil types, 

115 where the patterns of N2O emissions are poorly understood compared to some developed 

116 countries (Zou et al., 2010; Zhou et al., 2015; Yue et al., 2018). In the last decade, process-

117 based models (e.g., DNDC, DAYCENT, DLEM), used to produce Tier 3 IPCC estimates, 

118 simulated global and regional cropland-N2O emissions using sub-national N inputs from China 

119 (Li et al, 2001; Tian et al., 2019; Yue et al., 2019). These models are arguably more realistic 

120 than the Tier 1 approach because they account for climatic and soil variabilities. Although 

121 multi-model ensemble may reduce some errors across individual models through a broader 

122 integration of model processes (Tian et al., 2019), these individual models have rarely been 

123 validated by observations across contrasting environmental and management-related 

124 conditions (Ehrhardt et al., 2017), leading to large uncertainties not only in estimating emission 

125 trends, but also in identifying underlying drivers.

126

127 To address these knowledge gaps, we re-estimate the spatial pattern and temporal trend of 

128 cropland N2O emissions across China in 1990-2014. We advance the estimation of spatially-

129 explicit, long-term cropland N2O emissions in China by using an updated version of the 

130 spatially-referenced nonlinear model (Zhou et al., 2015) with high-resolution, crop-specific 

131 gridded datasets of N-fertilizer and irrigation uses. First, the model was updated through re-

132 calibration with N2O emission observations three times more than previous dataset. Second, 

133 maps (1-km) of crop-specific N-fertilization and irrigation application rates across Chin were 

134 collated, based on a compilation of sub-national statistics or surveys (Zhou et al., 2014; Zou et 

135 al. 2018), which differ from previous datasets based on downscaling of national totals (Lu & 
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136 Tian, 2017; Janssens-Maenhout et al., 2017) or modeling (Flörke, Schneider, & McDonald, 

137 2018). Finally, using one type of index decomposition analysis (Ang, 2015), we separated the 

138 contributions of agricultural management practices and environmental conditions on cropland 

139 N2O emission trends. This study considers direct emissions from croplands where synthetic 

140 fertilizers, livestock manure, human excreta, and crop residues are added, as well as indirect 

141 emissions due to atmospheric N deposition. Indirect emissions due to N leaching or runoff are 

142 not considered.

143

144 2. Data and methods

145 2.1 Updated spatially-referenced nonlinear model (SRNM)

146 The previous version of the SRNM model (Zhou et al., 2015) assume a quadratic relationship 

147 between cropland N application rates and N2O emissions, with spatially-variable model 

148 parameters depending on climate, soil properties, and crop management practices. The SRNM 

149 predict cropland-N2O emissions for each of geographical grids rather than administrative units. 

150 This calibrated formulation of N2O emissions was found to explain over 84% of the variance 

151 of field observations (Zhou et al., 2015), yet the model was only constrained by 732 field 

152 observations of N2O emissions. We updated the model by fitting the N2O emissions to new 

153 observations extended to 2,740 flux observations across 345 sites in the world (see Text S1, 

154 Tables S1~S2). The extended dataset covers a wider range of environmental conditions and 

155 agricultural management practices compared to our previous work and other similar studies 

156 (Gerber et al., 2016; Shcherbak et al., 2014) (Tables S3). The N2O emissions (E) of the updated 

157 SRNM model is described as:

158 ,                        (1a)
2� � � �� 	 	 	ijt ij ijt ij ijt ij ijtE R R

159 where
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160 ,            (1b)
 � 
 � 
 �2 2 2~ , ,  ~ , ,  ~ ,T T T

ij k ijk ijk ij k ijk ijk ij k ijk ijkN X N X N X� �  � �  � � � ��

161 ,        (1c)
 � 
 � 
 � 
 �2 2 2 2~ , ,  ~ , ,  ~ , ,  ~ 0,ijk ijk ijk ijk ijk ijk ijk ijk ijk ijtN N N N� � � � � � � � � � �� � �� ��

162 and i denotes the sub-function of N2O emissions (i=1, 2, �, I). j represents the type of crop 

163 (j=1-9, i.e., represents maize, wheat, paddy rice, vegetables, fruits, potatoes, oil crops, legume, 

164 and the other crops). k is the index of climate factors or soil property (k=1-6, i.e., soil organic 

165 carbon content, clay content, bulk density, soil pH, air temperature and the sum of precipitation 

166 and irrigation). Eijt denotes the N2O emission rate (kg N ha�1 yr�1) predicted for crop type j in 

167 year t in the ith type of regions. Rijt is N application rate (kg N ha�1 yr�1). �, �, and � are 

168 described as linear functions of climate or soil factors Xk (Table S2). � is an intercept denoting 

169 the background emission, �R2+�R represents the fertilizer-induced emission, �R+� being the 

170 emission factor, and � is the residual term. The random terms �, �, �, and � are assumed to be 

171 independent and normally distributed. � is the mean applied N effect for � and � or the mean 

172 emission baseline for �. , �, and� are standard deviations. All the parameter mean values and 

173 standard deviations in each of sub-functions were estimated by the Bayesian Recursive 

174 Regression Tree version 2 (BRRT v2) (Zhou et al., 2015), constrained by the extended dataset. 

175 The estimated parameter values are presented in Table S4. The detailed methodology of the 

176 BRRT v2 algorithm and the associated procedures can be found in Zhou et al. (2015).

177

178 2.2 New model inputs of N-fertilizers and irrigation

179 The updated SRNM model is forced by multiple gridded input datasets, including new datasets 

180 describing N inputs and irrigation to croplands. For N inputs, we first collected nationwide 

181 surveys of county-scale (the third-level administrative division) synthetic N fertilizer applied 

182 to croplands (FSN, kg N yr�1) for ~ 2900 counties in Mainland China, Taiwan, Hong Kong, and 

183 Macau for the period 1990-2014. These data were further disaggregated by nine types of crop, 
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184 based on the crop-specific, provincial data of Rijt from the Statistics of Cost and Income of 

185 Chinese Farm Produce (http://tongji.cnki.net/overseas). In addition, China has experienced 

186 changes of County-scale administrative divisions, such as aggregation, disaggregation, and 

187 name changes, so we harmonized the temporal evolution of FSN to fit the latest administrative 

188 divisions (http://geodata.pku.edu.cn), based on the historical trajectories summarized by the 

189 Ministry of Civil Affairs of China (http://xzqh.mca.gov.cn/). More details can be found in Text 

190 S2. Second, we estimated annual N in livestock manure, human excreta, and crop residues 

191 returned to croplands by the Eubolism model at county scale (Chen, Chen, & Sun, 2010), based 

192 on county-scale activity data, such as the numbers of livestock by animal, rural population, and 

193 yields by crop type. The Eubolism model has been evaluated against multi-site observations in 

194 highly-fertilized cropping areas across China (see Text S3). Third, dry and wet deposition of 

195 N species were quantified by the global aerosol chemistry climate model LMDZ-OR-INCA at 

196 a horizontal resolution of 1.27° latitude by 2.5° longitude (Wang et al., 2017), in which wet N 

197 deposition fluxes have been validated by a recent global dataset (Vet et al., 2014). Finally, crop-

198 specific N application rates (Rijt) were calculated as county-scale N input totals (i.e., synthetic 

199 fertilizers, manure, human excreta, crop residues, and N depositions) divided by the associated 

200 sowing areas that were obtained from the statistical yearbooks of 31 provinces 

201 (http://tongji.cnki.net/overseas). This new county-scale dataset of Rijt was then resampled into 

202 a 1-km grid map based on the dynamic cropland distributions (Liu et al., 2014). We assumed 

203 a maximum N fertilizer application rate of 700 kg N ha�1 based on a previous study (Carlson 

204 et al., 2017). 

205

206 The second new gridded dataset is cropland irrigation application rate for the period 1990-2014. 

207 We first collected prefectural-level (i.e., the second-level administrative division) cropland 

208 irrigation amounts from two nationally-coordinated surveys: the 2nd National Water Resources 
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209 Assessment Program for the period 1990-2000 (China Renewable Energy Engineering Insitute, 

210 2014) and the Water Resources Bulletins of 31 provinces for the rest of period 2001-2014 

211 (www.mwr.gov.cn/english/publs/). Both surveys had an identical methodology, including 

212 definitions, survey units, field surveys or measurements, and quality assurance. The detailed 

213 survey methodology is described in Text S4. It should be noted that cropland irrigation used 

214 here did not include water applied for aquaculture that accounts for less than 5% of agricultural 

215 irrigation (Zhu, Li, Li, Pan, & Shi, 2013). Cropland irrigation rates (mm yr�1) at the prefectural 

216 level were then calculated as cropland irrigation amounts divided by sowing areas. Similarly 

217 with Rijt, these prefectural-scale cropland irrigation application rates were then disaggregated 

218 by resampling to 1-km gridded cropland maps for the period 1990-2014, and such rates were 

219 simply assumed same for each crop. Other data sources for model inputs can be found in Text 

220 S5, including soil properties and climate factors relevant to N2O emissions.

221

222 2.3 Model validation and comparison

223 Process-based models were run using the same input data, and their outputs were compared 

224 with the results of the updated SRNM model. These process-based models include the Dynamic 

225 Land Ecosystem Model (DLEM) (Tian et al., 2015), the Organising Carbon and Hydrology In 

226 Dynamic Ecosystems (ORCHIDEE-OCN) (Zaehle & Friend, 2010), the Daily Century Model 

227 (DAYCENT) (Del Grosso et al., 2009), and Vegetation-Integrated Simulator for Trace Gases 

228 (VISIT) (Ito & Inatomi, 2012). Nitrification and denitrification processes in these models are 

229 expressed as functions of available substrates (NH+ 4or NO� 3 concentration), reaction rates, 

230 soil temperature and water content, but with different formulations and parameterizations (Tian 

231 et al., 2018). The results from atmospheric inversion of Saikawa et al. (2014), constrained by 

232 global measurements of N2O atmospheric concentrations, were also compared with the 

233 estimated N2O emissions. The new inversion was also conducted by replacing emissions from 
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234 this study for a priori agricultural soil emissions for China in the Bayesian inversion model 

235 (Saikawa et al., 2014). The detailed methodology and parameter calibration of the process-

236 based models and the inversion model can be found in previous studies (Saikawa et al., 2014; 

237 Tian et al., 2018). In addition, the national estimates of cropland N2O emissions were compared 

238 with the state-of-the-art emission inventories, including the Food and Agriculture Organization 

239 Emission Database (FAOSTAT) (FAO, 2018), the Emissions Database for Global 

240 Atmospheric Research (EDGAR version 4.3.2) (Janssens-Maenhout et al., 2019), and the 

241 Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) (Winiwarter, Höglund-

242 Isaksson, Klimont, Schöpp, & Amann, 2018), U.S. Environmental Protection Agency (USEPA) 

243 report (USEPA, 2012), and three China�s National Communication Reports (CNCR; National 

244 Development and Reform Commission, 2017) submitted to the UNFCCC for years 1994, 2005, 

245 and 2012. Note that EDGAR, FAOSTAT and GAINS estimates were derived using the 

246 methodology of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 

247 2006) and national fertilizer data from the FAO.

248

249 2.4 Attribution of N2O emission trends

250 We applied the Logarithmic Mean Divisia Index (LMDI) (Ang, 2015; Guan et al., 2018) to 

251 attribute N2O emission trends to different driving factors. The LMDI was chosen because of 

252 its path independence, consistency in aggregation, and ability to handle zero values (Ang, 

253 2015). The LMDI analysis compares a set of driving factors between the base and final year of 

254 a given period, and explores the effects of these factors on the change in China�s cropland-N2O 

255 emissions over that period. The detailed methodology of LMDI can be found in Ang (2015). 

256 According to previous modeling studies (Guan et al., 2018), we decomposed cropland-N2O 

257 emissions into a combination of different drivers: total sowing area (Ak, ha), the share of nine 

258 different crops to total sowing area (mjk, %) also known as crop mix, N application rate (Rjk, kg 
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259 N ha�1 yr�1), and the emission intensity (ejk, %) per crop type and region:

260 ,            (2)
 �jk jk jk

k k k jk jk jk

j jk jk jk

A N E
E A A m R e

A A N

� �
� � � � � � � �� �� �

� �
� �

261 where region k=1-8 corresponds to China, the Northwest, the Northeast Plain, the North China 

262 Plain, the lower reach of Yangtze River basin, the Southwest, the Northwest, and Qinghai-

263 Tibet Plateau; Ajk is the sowing area of crop j in cropping region k; Njk and Ejk are N-fertilizer 

264 application amount and croplands N2O emission of crop j in cropping region k, respectively. It 

265 should be noted that ejk is defined as cropland-N2O emission per unit of Njk, which is different 

266 from the emission factor defined in the 2006 IPCC Guidelines, and represents the gross 

267 emission intensity at a given N application level. The change of E of region k in the year t 

268 compared to the year t � 1 is computed as

269 .      (3)
1 1 1 1

ln ln ln ln
t t tt
jk jk jkk

k jk jk jk jkt t t t
j j j jk jk jk jk

A m R e

a R eA
E w w w w

A a R e

E E E E

� � � �

� � � � � �� �
� � 	 	 	� � � � � �� � � � � � � �� � � � � � � �

� � 	 � 	 � 	 �

� � � �

270 Here,  is a weighting factor called the logarithmic mean 
 � 
 �1 1/ ln lnt t t t

jk jk jk jk jkw E E E E� �� � �

271 weight (Ang, 2015). �EA, �Em, �ER, and �Ee, are changes in E, corresponding to change in 

272 total sowing area, shift in crop mix, change in N application rate, and emission intensity, 

273 respectively. The change of �E between base and final years is then calculated by the 

274 cumulative �E between adjacent years. The sign of the �E indicates a positive or negative 

275 effect of the factor on the change of cropland N2O emissions between the base and final years, 

276 and the potential impacts of nationwide policy interventions related to fertilizer application, 

277 crop type and sowing area.

278
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279 3. Results

280 3.1 Model performance

281 Combining the new N inputs and irrigation data and the other forcing datasets with the updated 

282 SRNM model, we estimated a mean annual N2O emission from China�s croplands of 0.62 � 

283 0.06 Tg N yr�1 during the period 1990-2014 (one standard deviation due to inter-annual 

284 variability of N2O emissions), with the spatial distribution shown in Fig. 1a. The validity of 

285 our N2O emission estimates was supported by internal cross-validation at 345 sites (R2=0.88 

286 and 0.90 for upland crops and paddy rice, respectively, Fig. 1b). In addition, our SRNM model 

287 outputs performed well in reproducing the spatial contrast and long-term inter-annual 

288 variability of N2O emissions as well as the sensitivity of N2O emission to environmental 

289 changes (Figs S1 and S2). In addition, the N2O emissions were corroborated against 

290 independent simulations from four process-based models and the estimates from the 

291 atmospheric inversion (R2 = 0.91 and 0.66, respectively, Fig. 1c). This new estimate of China�s 

292 cropland N2O emissions is consistent with the USEPA report (0.59 Tg N yr�1) (USEPA, 2012), 

293 and in general fell with the range of process-based models (0.35 to 0.73 Tg N yr�1, Fig. 1c). 

294 However, it exceeded emission estimates provided by EDGAR v4.3.2 product (Janssens-

295 Maenhout et al., 2017) by 43%, the FAOSTAT by +55%, the GAINS by 67%, and the CNCR 

296 for years 1994 and 2005 by 36% (t-test at the 95% level, Fig. 1d), but was comparable to the 

297 latest CNCR report for the year 2012 (0.78 Tg N yr�1).

298
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311 Figure 2. Comparisons of N inputs, emission factor and �background� anthropogenic 

312 emissions of cropland N2O in China. (a) Synthetic fertilizers applied to croplands. (b) Other 

313 N inputs, including manure (M), crop residues (CR), human excreta (HE) returned to croplands, 

314 and atmospheric deposition (AD) over croplands. (c) Lognormal probability density function 

315 of emission factor for all upland crops based on gridded results during the period 1990-2014, 

316 where the dashed lines indicate the median values, and shaded areas represent standard 

317 deviation for this study and observed values (OBS) or 95% confidence interval for the IPCC 

318 and the CNCR. (d) Same as panel c but for paddy rice. (e) Same as panel c but for background 

319 emission (E0) of upland rice. (d) Same as panel c but for E0 of paddy rice. Note that the 

320 definition of FAOSTAT, IPCC, CNCR, and OBS can be found in the text. 

321
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322 The differences between our estimates and other inventories were primarily attributed to the 

323 updates of N input data, emission factors, and �background� anthropogenic emissions from soil 

324 residual N (Fig. 2). First, our county-scale estimation of synthetic N fertilizer application was 

325 almost identical to the national statistics and FAOSTAT data (Fig. 2a), whereas the other N 

326 inputs were substantially larger because the inclusion of human excretion and atmospheric 

327 deposition over croplands (Figs 2b and S3). Second, our estimate of the nationally-averaged 

328 N2O emission factor (EF) for upland crops was larger than IPCC Tier 1 default by 20% (Fig. 

329 2c), but the EF was �17% lower for paddy rice (Fig. 2d and Text S6). Furthermore, the 

330 �background� anthropogenic emissions of N2O (�) due to the legacy effect resulting from 

331 historical soil N accumulation were estimated to be 1.40±0.04 kg N ha�1 yr�1 for upland crops 

332 and 1.30±0.05 kg N ha�1 yr�1 for paddy rice in this study (Figs 2e and 2f), while they were not 

333 fully accounted for by the IPCC Tier 1 inventories. Our estimates of this term were larger than 

334 the values used in the CNCR (0.80 and 0.56 kg N ha�1 yr�1), but generally agreed with the in 

335 situ observations (OBS) with zero N input (1.2 � 1.2 and 1.0 � 1.7 kg N ha�1 yr�1 based on 168 

336 and 54 sites, respectively). 

337

338 3.2 Trend in cropland N2O emissions in China

339 Over the period 1990-2014, cropland N2O emissions showed a persistent and widespread 

340 increase (Fig. S4), because of the significant increase in N inputs to croplands. However, the 

341 rate of this increase slowed down from 11.2 Gg N yr�2 (P < 0.001) before 2003 to 2.8 Gg N 

342 yr�2 (P = 0.02) afterwards (Figs 3a and 3b), a turning point detected by Pettitt's test (Pettitt, 

343 1979) (P < 0.001). This slower, insignificant growth of cropland-N2O emissions was confirmed 

344 by the process-based models with the same forcing datasets (19.8 Gg N yr�2 for 1990-2003, P 

345 < 0.001; 4.8 Gg N yr�2 for 2003-2014, P = 0.15; Fig. 3b). We then divided the past 25 years 

346 into two periods covering 1990-2003 (P1) and 2003-2014 (P2). Regionally, 
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357 approximately 64% of the Chinese sowing area experienced a weakened growth or even a 

358 decline of N2O emissions in P2, primarily located in major cropping areas such as the North 

359 China Plain, the Sichuan Basin, and a part of the Northeast Plain (Fig. 3c), while the rest 

360 showed a growth in emissions, mainly in Heilongjiang province and the Northwest China (Fig. 

361 3c). By contrast, the estimates provided by EDGAR v4.3.2 have suggested enhanced growth 

362 of cropland-N2O emissions across China (Figs 3b and S5). The estimated growth rate of 

363 cropland-N2O emissions in EDGAR v4.3.2 after 2003 (11.6 Gg N yr�2, P < 0.001) is much 

364 larger than that for 1990-2003 (6.2 Gg N yr�2, P < 0.001; Fig. 3b). Differences in emission 

365 trends between our estimates and the EDGAR product are mainly focused around the North 

366 China Plain (Fig. S5). 

367

368 3.3 Drivers of China�s cropland-N2O emission trends

369 The decomposition analysis in Fig. 4 shows the contribution of each of the four drivers to the 

370 change in cropland-N2O emissions in China and its seven major cropping regions. For P1, the 

371 trend of emissions was associated with a growth of Nrate for all crops (Fig. 4a), mainly located 

372 in the North China Plain and the Northeast Plain (Figs 4c-4d). For P2, the slower growth in 

373 cropland-N2O emissions across China was driven by the downward influences from the 

374 reduced Nrate and emission intensities, which largely offset the strong expansion of sowing 

375 areas particularly in the Northeast Plain (Figs 4a and 4c). By contrast, the shifts in the crop mix 

376 and in emission intensity contributed marginally to changes in emissions in both periods (Fig. 

377 4a). 

378

379 Contributions of the four driving factors to cropland-N2O emission trends differed between 

380 cropping regions (Figs 4b-4h). During the period P1, the trend in cropland-N2O emissions was 

381 explained by the growth of Nrate in most of the major cropping regions, except for the Northwest 
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382 where there was deceased emission intensity. During the period P2, sowing area expansion 

383 became the largest contributor to the positive cropland-N2O emission trends in the Northeast 

384 Plain, the Northwest, the Southwest, as well as the lower reaches of the Yangtze River basin. 

385 However, the decrease in emission intensity dominated the change in cropland-N2O emissions 

386 in the North China Plain, and Nrate contributed to the changes in the Southeast and Qinghai-

387 Tibet Plateau. 

388
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389 Figure 4. Contribution of different drivers to the change in cropland-N2O emissions by 

390 cropping region during 1990-2003 (P1) and 2003-2014 (P2). a. China; b. northwest China; 

391 c. northeast China; d. North China Plain; e. lower Yangtze Basin; f. southeast China; g. 

392 southwest China; h. Qinghai-Tibet Plateau. Note varying vertical-axes. The length of each bar 

393 reflects the contribution of each factor during the corresponding period.

Page 20 of 35Global Change Biology



For Review Only

Page 21 of 35 Global Change Biology



For Review Only

408 reversal in trend around 2003, from an increasing rate of +5.1 kg N ha[� yr�2 in P1 to a decrease 

409 of �0.7 kg N ha[� yr�2 in P2, although it varied across different cropping regions (Fig. 5a). 

410 Similar decreases in crop-specific Nrate were found for wheat, maize, and paddy rice, but not 

411 for vegetables and fruits, all with Pettitt's test (Fig. 5b, p < 0.001). Interestingly, these change 

412 points were, in general, coincident with changes in cropland-N2O emissions in China. The 

413 reductions of Nrate were mainly due to declines in synthetic fertilizer uses, particularly in the 

414 eastern and central China, the Yunnan-Guizhou Plateau, and the North China Plain (Fig. S6).

415

416 4. Discussion

417 Reliable estimation of cropland-N2O emissions and their drivers is fundamental to the 

418 development of policy for sustainable N management. Previous estimates have shown large 

419 differences in the magnitude and temporal evolution of annual cropland-N2O emissions. This 

420 has mainly been due to the lack of high-resolution data on agricultural management and of 

421 spatial representation in the models. Our updated SRNM model, along with new, crop-specific 

422 gridded datasets of N inputs and irrigation, permits a new insight into the spatial contrast and 

423 inter-annual variability of cropland-N2O emissions, and associates these with policy-driven 

424 technological adoption and environmental changes.

425

426 The reduced Nrate suggests that national N use efficiency of fertilizers has improved over recent 

427 decades, given that there was no reduction in per-area crop yields according to the national 

428 statistics (Sun & Huang, 2012). One of the most effective methods of making fertilizer use 

429 more efficient is to match the supply of nutrients with demand during field application 

430 (Richards et al., 2015). Such an approach was one of targets of the Nationwide Soil Testing 

431 and Formulation Fertilization Program, launched in the early 2000s (Table S7). This program 

432 started with staple crops, which account for ~50% of national N inputs on average, but after 
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433 2010 it extended to a number of cash crops. These improved N use efficiencies for staple crops 

434 were also found in the most recent study (Zou et al., 2018). According to national statistics 

435 (Sun & Huang, 2012), such technologies increased in prevalence on croplands from 3.3 million 

436 ha in 200 counties, to ~93 million ha in 2,498 counties (Fig. 5c). In addition, spatial re-

437 allocation of crops has extensively happened in China over recent decades, and is characterized 

438 by an emerging shift from peri-urban areas in the South and Central China (high N rate) to rural 

439 areas in the North (low N rate) because of urbanization (Fig. S7; Zou et al., 2018). Although 

440 the effectiveness of the Nationwide Soil Testing and Formulation Fertilization Program on the 

441 Nrate is difficult to quantify at the regional scale, these measures contributed to the decline in 

442 Nrate across China (Chen et al., 2014).

443

444 The increased sowing area was identified as the second important driver of cropland-N2O 

445 emission trends in P2 that partially offset the effect of decreasing Nrate. The shift in crop mix 

446 resulted in positive emission trends in P1, but made negligible contributions across most 

447 cropping regions in P2. Specifically, sowing areas by crop have changed in line with multiple 

448 nationwide crop structural transition programs in China. During the period 1990-2003, the 

449 Government of China encouraged the growth of cash crops to meet increased consumption 

450 requirements. According to national statistics, the sowing areas of vegetables and fruits 

451 increased by 115% and 57% in the P1 (Fig. 5d), respectively. Meanwhile, the areas sown to 

452 wheat and paddy rice declined by �30% and �22%, and sowing area of maize remained at the 

453 level as that in 1990. This structural transition in cropping patterns that occurred in P1 resulted 

454 in more cropland-N2O emissions, because vegetables and fruits, which constitute the major 

455 area of cash crops, have an emission factor two times higher than that of staple crops (Dobbie 

456 & Smith, 2003). During P2 (after 2003), the Government of China aimed to stabilize the 

457 production of cash crops, but to also restore the production of cereal crops. As a result, the 
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458 sowing areas of staple crops increased by 36%, while the sowing areas of vegetables, fruits, 

459 and oil crops were increased by only 11% (Fig. 5d). Compared to the period P1, this shift in 

460 crop mix in P2 exerted a lower upward pressure on cropland-N2O emissions, particularly in the 

461 major cropping regions. The results underscore the significance of land-use changes to the 

462 spatial and inter-annual variabilities of N2O emissions.

463

464 Our results show that emission intensity decreased during both periods and had a negative 

465 effect on the growth of cropland-N2O emissions across most of the cropping regions. Scenario 

466 simulations based on the SRNM (see Text S7) suggest that Nrate was the dominant factor 

467 controlling the emission intensity trend, followed by soil organic carbon (SOC) and water 

468 inputs (Fig. S8). Increased SOC offset 19% and 51% of the negative effects from Nrate for P1 

469 and P2, respectively. Thus whilst C sequestration can help offset some of the cropland 

470 emissions of CO2, a recent study suggests that carbon emission equivalents of non-CO2 GHG 

471 emissions are currently ~12 times greater than carbon uptake by Chinese croplands over 100-

472 year time horizon (B. Gao et al., 2018). SOC also played a role in increasing N2O emissions 

473 with a positive correlation between N2O emissions and SOC reported in field (Figueiredo, 

474 Enrich�Prast, & Rütting, 2016), laboratory studies (Jäger, Stange, Ludwig, & Flessa, 2011), 

475 meta-analyses (Bouwman, Boumans, & Batjes, 2002; Charles et al., 2017), and data mining 

476 analysis (Perlman et al., 2014). The postive effect of SOC could be explained by high SOC 

477 providing sources of energy, C and N for nitrifying and denitrifying microorganisms, and 

478 creating anaerobic conditions favoring the oxidation-reduction reaction for denitrification 

479 (Charles et al., 2017).

480

481 At present, the attribution of trends in cropland-N2O emissions to driving factors contains some 

482 uncertainties. Other potential factors responsible for the decline in emissions seem also to be 
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483 important, but were difficult to consider explicitly. These include, among others, changes in 

484 crop cultivars (Zhang, Fan, Wang, & Shen, 2009), cultivation technology improvements places 

485 (Jiang et al., 2018), timing (Jiang et al., 2018; Wang et al., 2016) and placement methods (Chen, 

486 Wang, Liu, Lu, & Zhou, 2016), and changes in fertilizer type (Bouwman et al., 2002). For 

487 example, multiple field trials for staple crops in China suggest a significant increase in N-use 

488 efficiency (ratio of yield to Nrate) associated with cultivar improvement over recent decades (de 

489 Dorlodot et al., 2007). However, this does not mean a coincident reduction of Nrate because 

490 crop yields (i.e., per-area crop production of these new cultivars) grew synergistically, and thus 

491 might require more fertilizer per unit of cropped area. The improvement of cultivation 

492 technology plays an important role in influencing cropland-N2O emissions. For example, the 

493 proportion of croplands using mechanically-aided deep placement of fertilizers increased from 

494 11% in 2003 to 26% at present, particularly in the north of China (Fig. 5e), decreasing the N 

495 losses and thereby cropland-N2O emissions. Increasing the return of crop residues, also 

496 particularly in the North China Plain, has been hypothesized as an emerging driver for the 

497 change of Nrate. In these regions, crop residues returned to croplands accounted for from 21% 

498 in 2003 to 33% of croplands in 2014 (Fig. 5f), increasing the potential to replace the application 

499 of synthetic fertilizers, and to change carbon and N biogeochemical cycles in soils (Chen, Li, 

500 Hu, & Shi, 2013; Xia et al., 2018). However, the effect of crop residues on cropland-N2O 

501 emissions is more complex and modified by the prevalence of aerobic and anaerobic soil 

502 conditions (Xia et al., 2018), and also the chemical composition of the plant material (S. Gao 

503 et al., 2018).

504

505 In summary, the results from this study underline the advantage of high-resolution agricultural 

506 activity data and emission intensity detailed by crop type, land-use dynamics and technology 

507 improvement to understand the change in cropland-N2O emissions. Most of the state-of-the-art 
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508 emission inventories that aim to quantify global N2O emissions, fail to capture either the 

509 magnitude or temporal trends in China. This is because firstly, an IPCC default EF of 1% 

510 assumes a constant relationship between N input and N2O emissions. This cannot reproduce 

511 the spatial and temporal responses of N2O emission to environmental changes. Secondly, 

512 emission inventories, in general, disaggregate national-scale or low-resolution fertilizer and 

513 irrigation data into gridded maps to generate cropland-N2O emission patterns. This would be 

514 likely to lower emission estimates from regions predominantly fertilized at high N inputs (e.g., 

515 the North China Plain), while increasing emission estimates from under-fertilized areas (e.g., 

516 the Northeast Plain). Process-based terrestrial biosphere models (TBM) still face many 

517 challenges in modelling changes in cropland-N2O emissions (Sandor et al. 2018). Though most 

518 of them consider the biotic and abiotic processes involved N2O production, they also generate 

519 divergent estimates of cropland-N2O emissions and spatio-temporal patterns (Tian et al., 2018). 

520 Possible reasons for divergent estimates among TBMs are the incomplete model representation 

521 of N2O emissions in response to agricultural management practices and uniform response 

522 functions of the N2O flux to environmental conditions (e.g., SOC). Improving the 

523 representation of crop-specific agricultural activity data and the regional adoptions of N2O flux 

524 response are recommended for future projections.

525

526 The updated SRNM model for China�s cropland-N2O emissions could be extended to other 

527 countries for updating their cumulative emissions and their contributions to global historical 

528 radiative forcing and ozone depletion. The decomposition of cropland-N2O emission trends to 

529 underlying drivers could facilitate the tracking of key indicators that require significant change. 

530 Our modeling results also highlight that technological adoption was intertwined with policy 

531 interventions in China. We argue that designing more realistic future scenarios for 

532 technological adoption will increase the likelihood that policies will be implemented to set 
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533 targets and incentives for cropland-N2O emission mitigation.

534
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