211 research outputs found

    Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate

    Get PDF
    Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. However, based on a close examination of recent literature, we argue that the role of hydrological control particularly precipitation on nutrient budgets is significantly underestimated in subtropical and tropical forests, hindering our predictions of future forest nutrient status under a changing climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient input and output data in precipitation and streamwater from a subtropical forested watershed in Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and subtropics. The results showed that monthly input and output of all ions and budgets (output – input) of most ions were positively correlated with precipitation quantity and there was a surprisingly greater net ion export during the wet growing season, indicating strong precipitation control on the nutrient budget. The strong precipitation control is also supported by the divergence of acidic precipitation and near neutral acidity of streamwater, with the former being independent from precipitation quantity but the latter being positively related to precipitation quantity. An additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the globe showed a strong correlation between precipitation quantity and nutrient output-input budget, indicating that strong precipitation control is ubiquitous at the global scale and is particularly important in the humid tropical and subtropical forests. Our results imply that climate change could directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern and amount

    The diabatic picture of electron transfer, reaction barriers and molecular dynamics

    Get PDF
    Diabatic states have a long history in chemistry, beginning with early valence bond pictures of molecular bonding and extending through the construction of model potential energy surfaces to the modern proliferation of methods for computing these elusive states. In this review, we summarize the basic principles that define the diabatic basis and demonstrate how they can be applied in the specific context of constrained density functional theory. Using illustrative examples from electron transfer and chemical reactions, we show how the diabatic picture can be used to extract qualitative insight and quantitative predictions about energy landscapes. The review closes with a brief summary of the challenges and prospects for the further application of diabatic states in chemistry.National Science Foundation (U.S.) (NSF-CAREER Award (CHE-0547877)David & Lucile Packard FoundationAlfred P. Sloan Foundatio

    Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection

    Get PDF
    Developing effective and safe drugs is imperative for replacing antibiotics and controlling multidrug-resistant microbes. Nanoscale silicate platelet (NSP) and its nanohybrid, silver nanoparticle/NSP (AgNP/NSP), have been developed, and the nanohybrids show a strong and general antibacterial activity in vitro. Here, their efficacy for protecting Salmonella-infected chicks from fatality and septicemia was evaluated. Both orally administrated NSP and AgNP/NSP, but not AgNPs alone, effectively reduced the systemic Salmonella infection and mortality. In addition, quantitative Ag analyses demonstrated that Ag deposition from AgNP/NSP in the intestines was less than that from conventional AgNPs, indicating that the presence of NSP for immobilizing AgNPs reduced Ag accumulation in tissue and improved the safety of AgNPs. These in vivo results illustrated that both NSP and AgNP/NSP nanohybrid represent potential agents for controlling enteric bacterial infections

    Myopia progression after cessation of atropine in children: a systematic review and meta-analysis

    Get PDF
    Purpose: To comprehensively assess rebound effects by comparing myopia progression during atropine treatment and after discontinuation.Methods: A systematic search of PubMed, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov was conducted up to 20 September 2023, using the keywords “myopia," “rebound,” and “discontinue." Language restrictions were not applied, and reference lists were scrutinized for relevant studies. Our study selection criteria focused on randomized control trials and interventional studies involving children with myopia, specifically those treated with atropine or combination therapies for a minimum of 6 months, followed by a cessation period of at least 1 month. The analysis centered on reporting annual rates of myopia progression, considering changes in spherical equivalent (SE) or axial length (AL). Data extraction was performed by three independent reviewers, and heterogeneity was assessed using I2 statistics. A random-effects model was applied, and effect sizes were determined through weighted mean differences with 95% confidence intervals Our primary outcome was the evaluation of rebound effects on spherical equivalent or axial length. Subgroup analyses were conducted based on cessation and treatment durations, dosage levels, age, and baseline SE to provide a nuanced understanding of the data.Results: The analysis included 13 studies involving 2060 children. Rebound effects on SE were significantly higher at 6 months (WMD, 0.926 D/y; 95%CI, 0.288–1.563 D/y; p = .004) compared to 12 months (WMD, 0.268 D/y; 95%CI, 0.077–0.460 D/y; p = .006) after discontinuation of atropine. AL showed similar trends, with higher rebound effects at 6 months (WMD, 0.328 mm/y; 95%CI, 0.165–0.492 mm/y; p < .001) compared to 12 months (WMD, 0.121 mm/y; 95%CI, 0.02–0.217 mm/y; p = .014). Sensitivity analyses confirmed consistent results. Shorter treatment durations, younger age, and higher baseline SE levels were associated with more pronounced rebound effects. Transitioning or stepwise cessation still caused rebound effects but combining optical therapy with atropine seemed to prevent the rebound effects.Conclusion: Our meta-analysis highlights the temporal and dose-dependent rebound effects after discontinuing atropine. Individuals with shorter treatment durations, younger age, and higher baseline SE tend to experience more significant rebound effects. Further research on the rebound effect is warranted.Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=463093], identifier [registration number

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Targeting a Chemo-Induced Adaptive Signaling Circuit Confers Therapeutic Vulnerabilities in Pancreatic Cancer

    Get PDF
    Advanced pancreatic ductal adenocarcinomas (PDACs) respond poorly to all therapies, including the first-line treatment, chemotherapy, the latest immunotherapies, and KRAS-targeting therapies. Despite an enormous effort to improve therapeutic efficacy in late-stage PDAC patients, effective treatment modalities remain an unmet medical challenge. To change the status quo, we explored the key signaling networks underlying the universally poor response of PDAC to therapy. Here, we report a previously unknown chemo-induced symbiotic signaling circuit that adaptively confers chemoresistance in patients and mice with advanced PDAC. By integrating single-cell transcriptomic data from PDAC mouse models and clinical pathological information from PDAC patients, we identified Yap1 in cancer cells and Cox2 in stromal fibroblasts as two key nodes in this signaling circuit. Co-targeting Yap1 in cancer cells and Cox2 in stroma sensitized PDAC to Gemcitabine treatment and dramatically prolonged survival of mice bearing late-stage PDAC, whereas simultaneously inhibiting Yap1 and Cox2 only in cancer cells was ineffective. Mechanistically, chemotherapy triggers non-canonical Yap1 activation by nemo-like kinase in 14-3-3ζ-overexpressing PDAC cells and increases secretion of CXCL2/5, which bind to CXCR2 on fibroblasts to induce Cox2 and PGE2 expression, which reciprocally facilitate PDAC cell survival. Finally, analyses of PDAC patient data revealed that patients who received Statins, which inhibit Yap1 signaling, and Cox2 inhibitors (including Aspirin) while receiving Gemcitabine displayed markedly prolonged survival compared to others. The robust anti-tumor efficacy of Statins and Aspirin, which co-target the chemo-induced adaptive circuit in the tumor cells and stroma, signifies a unique therapeutic strategy for PDAC

    ITPKC Single Nucleotide Polymorphism Associated with the Kawasaki Disease in a Taiwanese Population

    Get PDF
    Kawasaki disease (KD) is characterized by systemic vasculitis with unknown etiology. Previous studies from Japan indicated that a gene polymorphism of ITPKC (rs28493229) is responsible for susceptibility to KD. We collected DNA samples from 1,531 Taiwanese subjects (341 KD patients and 1,190 controls) for genotyping ITPKC. In this study, no significant association was noted for the ITPKC polymorphism (rs28493229) between the controls and KD patients, although the CC genotype was overrepresented. We further combined our data with previously published case/control KD studies in the Taiwanese population and performed a meta-analysis. A significant association between rs28493229 and KD was found (Odds Ratio:1.36, 95% Confidence Interval 1.12–1.66). Importantly, a significant association was obtained between rs28493229 and KD patients with aneurysm formation (P = 0.001, under the recessive model). Taken together, our results indicated that C-allele of ITPKC SNP rs28493229 is associated with the susceptibility and aneurysm formation in KD patients in a Taiwanese population

    Nardilysin-Regulated Scission Mechanism Activates Polo-Like Kinase 3 To Suppress the Development of Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) develops through step-wise genetic and molecular alterations including Kras mutation and inactivation of various apoptotic pathways. Here, we find that development of apoptotic resistance and metastasis of KrasG12D-driven PDAC in mice is accelerated by deleting Plk3, explaining the often-reduced Plk3 expression in human PDAC. Importantly, a 41-kDa Plk3 (p41Plk3) that contains the entire kinase domain at the N-terminus (1-353 aa) is activated by scission of the precursor p72Plk3 at Arg354 by metalloendopeptidase nardilysin (NRDC), and the resulting p32Plk3 C-terminal Polo-box domain (PBD) is removed by proteasome degradation, preventing the inhibition of p41Plk3 by PBD. We find that p41Plk3 is the activated form of Plk3 that regulates a feed-forward mechanism to promote apoptosis and suppress PDAC and metastasis. p41Plk3 phosphorylates c-Fos on Thr164, which in turn induces expression of Plk3 and pro-apoptotic genes. These findings uncover an NRDC-regulated post-translational mechanism that activates Plk3, establishing a prototypic regulation by scission mechanism

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    AbstractRiver ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.Abstract River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    Os ecossistemas fluviais recebem e processam grandes quantidades de carbono orgânico terrestre, cujo destino depende fortemente da atividade microbiana. A variação e o controle das taxas de processamento, no entanto, são mal caracterizados à escala global. Em resposta, utilizamos uma rede de pesquisa de pares e um ensaio de processamento de carbono altamente padronizado para conduzir um experimento de campo em escala global em mais de 1.000 locais fluviais e ribeirinhos. Descobrimos que os biomas da Terra têm assinaturas distintas de processamento de carbono. O processamento lento é evidente em todas as latitudes, enquanto as taxas rápidas são restritas às latitudes mais baixas. Tanto a taxa média como a variabilidade diminuem com a latitude, sugerindo restrições de temperatura em direção aos pólos e papéis maiores para outros fatores ambientais (por exemplo, carga de nutrientes) em direção ao equador. Estes resultados e dados preparam o terreno para uma “biomonitorização de próxima geração” sem precedentes, estabelecendo linhas de base para ajudar a quantificar os impactos ambientais no funcionamento dos ecossistemas à escala global.River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale
    corecore