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20 ABSTRACT

21 Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. 

22 However, based on a close examination of recent literature, we argue that the role of hydrological 

23 control particularly precipitation on nutrient budgets is significantly underestimated in subtropical 

24 and tropical forests, hindering our predictions of future forest nutrient status under a changing 

25 climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient 

26 input and output data in precipitation and streamwater from a subtropical forested watershed in 

27 Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and 

28 subtropics. The results showed that monthly input and output of all ions and budgets (output – 

29 input) of most ions were positively correlated with precipitation quantity and there was a 

30 surprisingly greater net ion export during the wet growing season, indicating strong precipitation 

31 control on the nutrient budget. The strong precipitation control is also supported by the divergence 

32 of acidic precipitation and near neutral acidity of streamwater, with the former being independent 

33 from precipitation quantity but the latter being positively related to precipitation quantity. An 

34 additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the 

35 globe showed a strong correlation between precipitation quantity and nutrient output-input budget, 

36 indicating that strong precipitation control is ubiquitous at the global scale and is particularly 

37 important in the humid tropical and subtropical forests. Our results imply that climate change could 

38 directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern 

39 and amount.

40 Keywords: Biogeochemistry; Ecohydrology; Fushan Experimental Forest; Nutrient budget; 

41 Precipitation control; Tropical forests
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42 1. Introduction

43 Nutrient cycling is a key ecosystem process that is closely linked to ecosystem structure and 

44 functions (Likens and Bormann, 1995). Elevated nitrogen availability through atmospheric 

45 deposition has been reported to reduce plant diversity in many ecosystems (Bobbink et al., 2010) 

46 and low nutrient availability associated with excessive water availability is considered to be the 

47 main factor constraining productivity in wet tropical forests (Schuur and Matson, 2001; Runyan et 

48 al. 2013).  It has been demonstrated that strong biological control on nutrient cycling in forest 

49 systems is ubiquitous (Belillas and Rodá, 1991; Reynolds et al., 1991; Oyarzún et al., 2004; 

50 Homyak et al., 2014). Direct evidence of the role of biological control on nutrient cycling came 

51 from observations of the rapid decline of elevated nutrient concentrations in streamwater following 

52 forest re-vegetation after a disturbance. The nitrate concentration declined approximately 10% and 

53 50% in the first and second year following revegetation at Watershed 2 at the Hubbard Brook 

54 Experimental Forest, which was one of the first watershed-scale manipulation experiments in the 

55 world (Likens and Bormann, 1995). Similar results have been supported by many subsequent 

56 studies (Vitousek, 1977; Reynolds et al., 1991; Fenn and Poth, 1999).

57 A number of later studies have also reported that precipitation (or streamflow) plays an 

58 important role in the control of export of nitrogen and dissolved organic carbon from forested 

59 watersheds (Fenn and Poth, 1999; Burt and Pinay, 2005; Goodale et al., 2009; Ohte, 2012; Duncan 

60 et al., 2015). It is not surprising that water is closely linked to biogeochemistry because water is 

61 the essential reactant, catalyst, or medium for many biogeochemical reactions (Wang et al., 2015). 

62 However, based on a close examination of results from work done in a range of humid tropical 

63 and subtropical forests (Bruijnzeel et al., 1993; Liu et al., 2003; Goller et al., 2006; Lu et al., 2011), 

64 which reported greater net loss of nutrients (outputinput) not just input or output in the wet season 

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168



4

65 than dry season, we argue the role of precipitation on nutrient cycling is significantly 

66 underestimated. If proven true, it will have important implications on how climate change may 

67 affect forest ecosystem dynamics in these systems. Many empirical studies and model projections 

68 indicate that a large part of the tropics and subtropics are likely to experience greater variability of 

69 precipitation and many countries around the western Pacific Ocean (especially northern Australia) 

70 and Indian Ocean (especially the India continent and East Africa) will have more precipitation in 

71 the wet season (Chou et al., 2013; Feng et al., 2013). Given the role we posit precipitation plays in 

72 controlling nutrient budgets, predicted shifts in precipitation quantity associated with climate 

73 change may have enormous effects on forest structure and function through alteration in the 

74 nutrient dynamics of the ecosystem. To explicitly test the hypothesis of strong precipitation control 

75 on nutrient budget and examine the underlying mechanisms, we analyzed two-decadal data 

76 (19942013) of nutrient input though bulk precipitation and output through streamwater at the 

77 Watershed 1 (WS1) of Fushan Experimental Forest (FEF) in northeastern Taiwan. We also 

78 synthesized annual nutrient budgets in relation to rainfall quantity for 32 forest sites across the 

79 globe to explore the role of precipitation control at a global scale.

80 2. Materials and methods

81 2.1. Study site

82 The FEF is located in northeastern Taiwan (24°34’N, 121°34’E) with an area of approximately 

83 1000 ha (Fig. S1). It is a subtropical evergreen hardwood rainforest dominated by trees species in 

84 Lauraceae and Fagaceae family and characterized by high (4200 mm yr-1) and frequent (> 220 

85 days yr-1) rainfall (Horng and Chang, 1996; Lin et al., 2011). Annual mean temperature of FEF is 

86 18.2°C with the lowest in January (11.8°C) and highest in July (24.1°C) and annual mean relative 

87 humidity is 94% with the lowest in July (92%) and highest in February (95%). The 38 ha WS1 
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88 varies in elevation from 670 to 1100 m with a mean slope of 38% (Lin et al., 2011). The soil of 

89 WS1 is Typic Dystochrepts characterized as very acidic (pH 3.85.0) with low cation exchange 

90 capacity (1925 cmol kg-1) and very low base saturation (<2%) (Horng and Chang, 1996).

91 2.2. Bulk precipitation and streamwater sampling

92 Bulk precipitation was collected on an event basis between 1994 and 1996 and on a weekly 

93 basis thereafter using three pairs of collectors mounted on top of a 6-m tower in a forest clearing 

94 near the weir of WS1 (Fig. S1). Each pair, consisting of two 20-cm diameter funnels, was 

95 connected with polypropylene tubing to a 30-L plastic bucket on the ground (Lin et al., 1997). 

96 Each funnel had a 6 cm vertical lip and a 45° slope to minimize splashing. Streamwater was 

97 collected at a six-hour interval using an ISCO autosampler controlled by ISCO-3220 flow meter 

98 (ISCO Inc., Lincoln, NE, USA). Composite samples were taken weekly. Flow data was recorded 

99 using an ISCO-3220 flow meter (ISCO Inc., Lincoln, NE) measuring water level in a 90° V-notch 

100 weir. There were gaps in streamflow, especially between 2003 and 2005, mostly due to typhoon 

101 damages. The daily rainfall-streamflow relationship established using HBV (Hydrologiska Byråns 

102 Vattenavdelning) model (Nash-Sutcliffe efficiency> 0.75) (Nash and Sutcliffe, 1970; Seibert and 

103 Vis, 2012), was used to fill the streamflow gaps (approximately 14% of the data). 

104 2.3. Throughfall and soil water sampling

105 Between November 2009 and October 2012, throughfall and soil solution were also collected 

106 on a weekly basis. Throughfall was collected in three 20  20 m plots located at the lower 

107 elevations (< 700 m) of the watershed (Fig. S1). Within each plot, six sets of throughfall collectors 

108 were constructed following a previous study at the same site (Lin et al., 1997, 2000). Each set 

109 consisted of three 20-cm diameter funnels 0.5 m apart and 1.5 m above the ground, kept level, 

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280



6

110 arranged in a line connected to a 30-L bucket using polypropylene tubing. For soil solution 

111 collection, two sets of soil water collectors (Soilmoisture Equipment Corp. Santa Barbara, CA, 

112 USA) that were >10 m apart were installed within each throughfall collection plots. Each set had 

113 three lysimeters that sampled water at depths of 15, 30 and 60 cm. Each lysimeter has a ceramic 

114 cup epoxy bonded to PVC body (diameter 4.8 cm) and two ports on the top. One port is for the 

115 application of a vacuum or pressure and the other is for the delivery of collected water samples to 

116 the surface. The lysimeters were given a (negative) pressure at 0.05 Mpa one week prior to 

117 sampling (i.e., the pressure were applied after each sampling). The first sampling was taken three 

118 months after the installation of the lysimeters. 

119 2.4. Chemical analyses and quality control

120 Water samples were kept in refrigerators at 4°C without preservatives prior to measurement. 

121 Conductivity and pH were measured on unfiltered samples. Two replicates of each filtered sample 

122 (Gelman Science GN-6 grid 0.45 m sterilized filter paper) was analyzed for Cl-, NO3
-, SO4

2-, Na+, 

123 K+, Ca2+, Mg2+, NH4
+, and PO4

3- using ion chromatography (Dionex Corp., Sunnyvale, CA) (Lin 

124 et al., 1997). Concentrations of PO4
3- in precipitation were below or near the detection limit (0.5 

125 eq L-1) and, thus, were not reported. The quality of the chemical data of water samples was 

126 checked using charge balance (i.e., [total cation charge – total anion charge]/[total cation charge + 

127 total anion charge]100%). For both precipitation and streamwater if the imbalance is more than 

128 ± 20% the data was excluded from our analysis (Clow and Mast, 1999; Herckes et al., 2002). 

129 Following this criterion, 2.9% of the precipitation samples and 1.0% of the streamwater samples 

130 were excluded from the analysis. In terms of the water quantity not included in the analysis, it is 

131 1.9% for precipitation and 1.1% for streamwater.
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132 2.5. Data synthesis

133 In our global synthesis of nutrient input-output budgets along the latitude and annual 

134 precipitation gradients, we searched major academic databases including Thomson Reuters Web 

135 of Science and Google Scholar. The keywords used in our searches included “(acid) precipitation, 

136 and streamwater chemistry”, “(acid) deposition, and streamwater chemistry”, “nutrient, input, and 

137 output (or export)”, “nutrient budget”, and “nutrient cycling”. Over 600 articles were downloaded 

138 and checked. We kept only those that analyzed the chemistry of all major cations (H+, Na+, K+, 

139 NH4
+, Mg2+, Ca2+) and anions (Cl-, NO3

-, SO4
2-) for both “precipitation” and “streamwater” for at 

140 least one complete year. For studies spanning more than one year, the averages were used. Thirty-

141 two studies met the criteria (Table S1) and were classified into six types based on their 

142 geographical location (latitude and elevation) including six climate types, boreal (latitude > 55°, n 

143 = 2), temperate (latitude: 40°55°, n = 12), low elevation subtropical (latitude: 23.5°40°; 

144 elevation < 1000 m, n = 7), high elevation subtropical (latitude: 23.5°40°; elevation > 1000 m, n 

145 = 5), low elevation tropical (latitude < 23.5°; elevation < 1000 m, n = 4) and high elevation tropical 

146 (latitude < 23.5°; elevation > 1000 m, n = 2) (Table S1, Fig. S2). Data from the 32 studies were 

147 extracted and/or re-calculated to derive annual precipitation, annual VWM (volume-weighted 

148 mean) pH of precipitation and streamwater and an annual nutrient budget (outputinput) (kg ha-1 

149 yr-1) of inorganic nitrogen (NO3
- + NH4

+) and base cations (Na+ + K+ + Mg2+ + Ca2+). We re-

150 calculated 13 sites that had volume-weighted mean concentrations and quantity of precipitation 

151 but no fluxes. Then, linear regression models were developed to explore the relationships between 

152 annual precipitation amount and annual VWM pH, streamwater pH, inorganic nitrogen budget as 

153 well as base cations budget under different climate types. The statistical significance level was set 

154 at P < 0.05.
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155 3. Results

156 3.1. Precipitation quantity and nutrient input-output budget

157 The monthly input and output flux of all ions through bulk precipitation was positively 

158 correlated with rainfall quantity (Table 1). There were also positive correlations between monthly 

159 rainfall quantity and the input-output budget of all ions (i.e., lower retention or greater loss 

160 associated with higher rainfall) except H+ and NH4
+, and Cl- (Table 1). The monthly input-output 

161 budget of H+ and NH4
+ were negatively correlated with rainfall, and that of Cl- was not correlated 

162 to rainfall (Table 1). There were similar patterns between ion input, output and budget and rainfall 

163 quantity at the annual scale but only a few of them were statistically significant due to the small 

164 sample size (n = 20) (Table 1). Net export (output–input) of inorganic nitrogen (NH4
+ + NO3

-) and 

165 all other ions except Cl- was higher in the wet warm season (growing season) than the relatively 

166 drier season at the FEF (Fig. 1). 

167 Based on a synthesis of 32 studies across the globe, annual budgets (output–input) of inorganic 

168 nitrogen and base cations were positively correlated to rainfall quantity (Fig. 2(a) and (b)) across 

169 a very wide latitudinal range (059°, Table S1, Fig. S2). However, the patterns were largely driven 

170 by the results from tropical and subtropical sites because when analyzed for individual climate 

171 regions, only the patterns for the tropical and subtropical sites were significant (Fig. 2(a) and (b)).

172 3.2. Divergence of precipitation and streamwater acidity

173 There was a striking divergence in acidity between precipitation and streamwater over the two 

174 decades at FEF (Fig. 3(a)). The precipitation was acidic with 90% of the annual VWM pH being 

175 less than 5.0 (the criteria of acid rain) whereas the two decadal VWM pH was 4.63. However, 
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176 streamwater showed no sign of acidification with the two decadal annual VWM pH of 6.95 

177 (ranging from 6.6 to 7.5) (Fig. 3(a)). 

178 The results from the global synthesis revealed that high precipitation acidity (i.e., low pH) was 

179 common worldwide and was independent of precipitation quantity (Fig. 2(c)). However, the pH of 

180 streamflow is positively correlated with precipitation quantity (Fig. 2(d)). The pattern is also 

181 largely driven by the results from tropical and subtropical sites because when analyzed for 

182 individual climate regions, only the patterns for the tropical and subtropical sites were significant 

183 (Fig. 2(c)). Notably, at the five forest sites that had annual precipitation greater than 2800 mm, 

184 streamwater pHs were always greater than 6.5 (Fig. 2(d)). 

185 3.3. Change in water pH in relation to base cations

186 Water pH (± 1 standard deviation) increased from 4.6 (± 0.62) in precipitation to 5.2 (± 0.48) 

187 in throughfall in association with the enrichment in total base cations (Na++K++Ca2++Mg2+) from 

188 67 to 126 eq L-1 at the FEF (Fig. 3(b) and (c)). Using the sodium ratio estimation method, the dry 

189 deposition at FEF was approximately 28% of bulk precipitation (Lin et al., 2000) or 24 eq L-1 for 

190 all base cations combined. Thus, the rest (i.e., 35 eq L-1) of the enrichment (59 eq L-1) of base 

191 cations in throughfall relative to precipitation was from cation exchange with the canopy. There 

192 was little change in total base cation concentration from throughfall to soil solution and the pH 

193 was low in soil solution (Fig. 3(b)). Using the HBV model, the estimated contribution of 

194 groundwater to streamflow was approximately 40% during storm periods and 80% during rainless 

195 periods (Fig. S4). 

196 4. Discussion
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197 The positive correlation between water quantity and ion input via precipitation or output via 

198 streamwater is not surprising because water is the main vector of ion movement. However, to our 

199 knowledge, we are the first to report that the input-output budget is driven by precipitation 

200 quantity. The finding is of great significance because it means as water quantity increases the 

201 increase in ion output is greater than ion input and as such, changes in rainfall quantity resulting 

202 from climate change many lead to greater nutrient losses. We also show that the budgets for all the 

203 major ions (except PO4
3- and Cl-), not just nitrogen, are controlled by water quantity. In terms of 

204 the three exceptions, H+ was negatively correlated with rainfall as it was retained by the watershed, 

205 NH4
+ was negatively correlated with rainfall likely due to the very low level of NH4

+ in 

206 streamwater resulting from nitrification (Table 1), and Cl- was not correlated to rainfall because it 

207 was considered a conservative ion that by-passes the system with a net budget of near zero (Lovett 

208 et al., 2005).

209 The precipitation control over nutrient budgets was also supported by the greater net export of 

210 nitrogen and most ions in the wet warm season (growing season) than the relatively drier season. 

211 The change from net retention in the relatively drier months to net loss in the wetter months for 

212 inorganic nitrogen and to a lesser degree for potassium, two of the three elements that are in highest 

213 biological demand, is of particular importance. Greater net nitrogen export through streamwater 

214 in the growing season has been reported for many forest ecosystems (Ohrui and Mitchell, 1997; 

215 Goller et al., 2006; Yusop et al., 2006). Possible explanations include the warm and humid 

216 condition being favorable for nitrification, and high soil moisture and high runoff activating NO3
- 

217 transport and discharge from soil to the drainage system (Goodale et al., 2009; Ohte, 2012).

218 The global pattern of positive correlation between the annual budget (output–input) of 

219 inorganic nitrogen and base cations and precipitation quantity across the very wide latitudinal 
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220 range supports the strong and widespread precipitation control on a nutrient budget. The results 

221 from our watershed study and the data synthesis do not undermine the role of biological control 

222 (e.g., the input-output budget of NH4
+ was clearly influenced by microbial transformation). 

223 However, our long-term empirical data in combination with global synthesis data clearly illustrate 

224 that the role of precipitation control on nutrient budgets, both nitrogen and other major ions, are 

225 much larger than previously realized.

226 The divergence in the acidity of precipitation and streamwater is in contrast to many reports 

227 from the temperate region in which acidification of precipitation was followed by acidification of 

228 streamwater (Driscoll et al., 1980; Herlihy et al., 1993; Likens et al., 1996; Nakahara et al., 2010). 

229 Cation exchange and weathering of base cations are two important processes that could buffer acid 

230 inputs in streams. The effect of cation exchange on buffering acid input is clearly illustrated in 

231 higher pH of throughfall (5.2) than precipitation (4.6) in association with the increase in base 

232 cations at the FEF. Part of the increases in total base cation from precipitation to throughfall was 

233 from dry deposition that was not collected by the bulk precipitation collectors. However, the little 

234 change in total base cation concentration from throughfall to soil solution and the low pH of soil 

235 solution (Fig. 3(b) and (c)) reflects the overall low cation exchange capacity of the soils at the FEF. 

236 Thus, cation exchange occurring in the soil cannot explain the near neutral acidity and high base 

237 cation content (480 eq L-1) of streamwater at FEF. The high contribution of groundwater to 

238 streamflow suggest that the observed higher pH and base cation concentration in streamwater 

239 compared to precipitation, throughfall and soil solution was most likely the result of the constant 

240 exchange of cations between groundwater and streamwater. The contribution of groundwater on 

241 neutralizing acidity is supported by a study of groundwater chemistry of storm events (11350 
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242 mm) which reported that base cation concentration in groundwater was 455634 eq L-1 and the 

243 pH was 6.436.74 (Cheng, 2000). 

244 The important role of precipitation in regulating nutrient budgets has vital implications for 

245 ecosystems experiencing the effects of climate change. Based on a synthesis of 125 studies on 

246 recent changes and projections of future changes in precipitation, the wet-gets-wetter and dry-gets-

247 drier scenarios and increases in rainfall intensity or extreme rainfall events in wet summer and 

248 decreases in dry winter-spring were generally supported at a global scale (Table S2). This pattern 

249 is also applicable to Taiwan in which the wetter northern Taiwan (where the FEF is located) has 

250 been reported and projected to become wetter, especially in the wet season, while the drier southern 

251 Taiwan is becoming drier, especially in the dry season (Table S2). Increases in atmospheric CO2 

252 concentrations may enhance plant growth and thereby increase nutrient retention via uptake (Lewis 

253 et al., 2009; Keenan et al., 2013; Forkel et al., 2016). However, the response of the vegetation may 

254 be limited due to nutrient losses associated with higher rainfall in wet regions. Although increases 

255 in precipitation could also increase nutrient input, the positive relationship between rainfall 

256 quantity and nutrient input-output budget (or net loss of nutrients) at the FEF and a variety of 

257 forests across the globe showed that there will be a disproportionally higher export of nutrients. 

258 Previous studies have shown that there was a disproportionally higher export of nitrate and base 

259 cations during heavy storms (Lin et al., 2011; Chang et al., 2013). As a consequence, the system 

260 switched from a nitrogen balanced stage during base flow periods to net loss stage during heavy 

261 storms, and the system had greater net losses of base cations during heavy storms (Chang et al., 

262 2013; Huang et al., 2016). Nutrient cation content is, in general, negatively related to precipitation 

263 and soil acidity (James et al., 2016). Given the low cation exchange capacity (1925 cmol kg-1) 

264 and very low base saturation (< 2%) of the FEF (Horng and Chang, 1996) and many tropical and 
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265 subtropical forests, enhanced leaching loss of nutrient cations may lead to further acidification of 

266 the already acidic soils and the depletion of nutrient cations. This in turn could negatively affect 

267 net primary production and, therefore, carbon sequestration.

268 5. Conclusions

269 Our long-term monitoring of nutrient input and output and a global synthesis indicate that 

270 nutrient budgets are all under strong precipitation control and such control is widespread. Many 

271 studies projected increases in rainfall quantity and intensity in wet regions that already have low 

272 soil pH and nutrient cations. The positive relationship between precipitation and the nutrient 

273 budget (outputinput) indicates that ecosystems in wet regions such as the humid tropical and 

274 subtropical forests may experience even greater losses of critical nutrients. The consequences of 

275 such changes in nutrient budget on net primary productivity deserve more attentions. Our results 

276 also highlight the importance of recognizing the isolation of the soil-vegetation system from the 

277 streamwater system in which the rock weathering cannot replenish the loss of nutrient cations from 

278 the soils that might be common in many humid tropical and subtropical forests. 
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411 Table 1

412 Correlations between ion flux through rainfall input and streamflow output (kg ha-1) and budget 

413 (outputinput) and precipitation (mm) at monthly and annual scales at Fushan Experimental Forest 

414 during 19942013.

Input Output Budget 

Monthly Annual Monthly Annual Monthly Annual

H+ 0.35** 0.18 0.57** 0.38 0.38** 0.40

SO4
2- 0.54** 0.61** 0.60** 0.53* 0.67** 0.34

NO3
- 0.24** 0.28 0.58** 0.24 0.66** 0.29

Cl- 0.65** 0.43 0.61** 0.53* 0.08 0.34

Na+ 0.66** 0.30 0.68** 0.56* 0.64** 0.52*

NH4
+ 0.32** 0.37 0.23** 0.21 0.25** 0.62**

K+ 0.50** 0.25 0.68** 0.42 0.52** 0.12

Mg2+ 0.50** 0.33 0.67** 0.54* 0.76** 0.51*

Ca2+ 0.51** 0.30 0.62** 0.51* 0.75** 0.52*

415 * and ** indicate significant with two-tailed test at P-value < 0.05 and  < 0.01, respectively.
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416

417

418 Fig. 1.  Mean monthly nutrient budget (output through streamwater  input via bulk 

419 precipitation) at the Fushan Experimental Forest between 1994 and 2013. Error bars indicate one 

420 standard deviation. Note that there were no significant temporal trends in annual/seasonal 

421 precipitation during the study period.
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422

423

424 Fig. 2.  Relationship between annual precipitation and net ecosystem budget (outputinput). (a) 

425 Relationship between annual precipitation and inorganic nitrogen (NH4
+ + NO3

-). (b) Relationship 

426 between annual precipitation and total base cations (i.e., Na+ + K+ + Ca2+ + Mg2+). (c) Relationship 

427 between annual precipitation and pH of precipitation. (d) Relationship between annual 

428 precipitation and pH of streamwater. The data is from our synthesis based on studies from 32 

429 forests in which chemistry of both precipitation and streamwater are available (see Table S1 for 

430 the detailed information of the 32 forests).
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431

432

433 Fig. 3.  (a) The annual volume weighted mean (VWM) pH of precipitation and streamwater during 

434 19942013 (with 20092012 shaded in gray). Error bars indicate one standard deviation. (b) 

435 Changes in pH, and (c) concentration of total base cations (Na+ + K+ + Ca2+ + Mg2+) along the 

436 hydrological path at the Fushan Experimental Forest. The components include precipitation (Pre), 

437 throughfall (Thr), soil water in depths of 15 cm (S15), 30 cm (S30), and 60 cm (S60), and 

438 streamwater (Str) between 2009 and 2012. Note that there are no differences in annual/seasonal 

439 precipitation patterns between the four shaded years (20092012) and the full 20-year dataset (Fig. 

440 S3).
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Highlights

1. Precipitation exerts strong control on nutrient budgets (outputinput) in tropics 

2. Acidity diverges between precipitation (acidic) and streamwater (neutral) 

3. Climate change may largely affect nutrient cycling through altering precipitation regime



Summary statement for “Short Communication” in AWR

Through analysis of 20-yr data from a subtropical forest and a global 
synthesis of 32 forest sites, we report strong precipitation control not 
only on nutrient input and output (which is not surprising because water 
is the main vector of nutrient movement) but also on the nutrient budget. 
The results suggest that climate change could have major impact on 
nutrient cycling through altering precipitation regime.
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Table S1  The detailed information of the 32 forest sites in Fig. 2 

Tree speciesSites (Reference) Location (Elevation, m)

Coniferous Hardwood/deciduous

Sampling 

Period 

Pedra Preta, Brazil (1) 0°5’ N, 51°5’ W (200) Undisturbed rainforest 19931994

Loja, Ecuador (2) 4°0’ S,  79°1’ W (320) Lauraceae, Rubiaceae, 
Melastomataceae, 
Euphorbiaceae,

20042005

Mull, Jamaica (3) 18°1’ N, 76°4’ W (1809) Alchornea latifolia, 
Chaetocarpus globosus, 
Clethra occidentalis

1995

Luquillo, Puerto Rico (4) 18°2’ N, 64°5’ W (390) Dacryodes excelsa Vahl 19841985

Cunha-Indaiá, Brazil  (5) 23°1’ S, 45°5’ W (1050) Sebastiania commersoniana, 
Lithraea brasiliensis, 
Zanthoxylum rhoifolium, 
Myrcia sp.

20002002

Liu Xi He, China (6) 23°3’ N, 133°4’ E (500) Cunninghamia lanceolata 20012003

Guandaushi, Taiwan (7) 23°4’ N, 120°5’ E (1200) Helicia formosana, Litsea 
acuminate

19951997



Leinhuachi, Taiwan (8) 23°5’ N, 120°5’ E (760) Cunninghamia lanceolata 20052010

Xujiaba, China (9) 24°1’ N, 101°1’ E (2500) Lithocarpus xylocarpus 
Markg, Castanopsis wattii 
A. Camus

19981999

Fushan, Taiwan (This 
study)

24°3’ N, 121°3’ E (680) Cryptocarya chniesis, 
Diospyros morrisiana, 
Engelhardtia roxburghiana

19942013

Lei Gong Shan, China (6) 26°2’ N, 108°1’ E (1700) Pinus massioniana 20012003

Liu Chon Guang, China (6) 26°4’ N, 106°4’ E (1300) Pinus massioniana 20012003

Caj Jia Tang, China (6) 27°5’ N, 112°3’ E (480) Pinus massioniana 20012003

Tie Shan Ping, China (6) 29°4’ N, 104°4’ E (470) Pinus massioniana 20012003

Kawai, Japan (10) 33°2’ N, 132°5’ E (700) Cryptomeria japonica, Chamaecyparis 
obtuse, Pinus densiflora

19962004



Table S1  Continued.

Tree speciesSites (Reference) Location (Elevation, m)

Coniferous Hardwood/deciduous

Sampling 

Period 

Coweeta, USA (11) 35°0’ N, 83°2’ W (350) Quercus prinus, Quercus 
rubra, Quercus alba, 
Quercus velutina

19721983

Great Smoky Mt, USA (12) 35°3’ N, 83°2’ W (1750) Pices rubens 19912006

Kajikawa, Japan (13) 37°5’ N, 139°2’ E (100) Cryptomeria japonica D Don. 20032006

Montseny, Spain (14) 41°5’ N, 2°2’ E (1275) Holm-oak 19841986

Cone pond, USA (15) 43°5’ N, 71°4’ W (550) Fagus grandifolia, Betula 
alleghaniensis, Acer

19921994

HBEF, USA (16) 43°5’ N, 71°5’ W (750) Fagus grandifoia Ehrh., 
Acer saccharum Marsh., 
Betula alleghaniensis Britt.

19632009

HJ Andrews, USA (17) 44°1’ N, 122°2’ W (500) Pseudotsuga menziesii (Mirb.) Franco 19731975

Mont Lozere, France (18) 44°2’ N, 3°5’ E (1250) Fagus sylvatica 19811985

Sleepers River, USA (15) 44°2’ N, 72°0’ W (620) Fagus grandifolia, Betula 
alleghaniensis, Acer

19921994



Schluchsee, Germany (19) 47°5’ N, 8°1’ E (1200) Picea abies 19881998

Strengbach, France (20) 48°1’ N, 7°1’ E (1000) Picea abies Karst, Abies alba Mill Fagus sylvatica L. 19891990

Haney, Canada (21) 49°2’ N, 122°3’ W (300) Tsuga heterophylla, Thuja plicata, 
Pseudotsuga menziesii

19711972

Krusne hory, Czech (22) 50°3’ N, 13°1’ E (700) Picea abies, Larix decidua 19831997

Afon Hore, UK (23) 52°1’ N, 2°5’ W (550) Picea abies, Picea sitchensis, Pinus 
cntoria, Larix kaempferi

19841990

Beddgelert, UK (24) 53°0’ N, 4°1’ W (330) Picea sitchensis (Bong.) Carr. 19831984

Kelty, UK (25) 56°0’ N, 4°2’ W (250) Picea sitchensis 19851987

Kindla, Sweden (26) 59°5’ N, 14°5’ E (350) Picea abies 1997



Table S2  The current developments and projections of global patterns of precipitation. The table was created via the synthesis of articles published 

in the field of “Meteorology & Atmospheric Sciences (84 journals)” in the Thomson Reuters Web of Science. The keywords used in the search 

contained “global precipitation”, “global pattern of precipitation”, and “trend of precipitation in America (Europe, Asia, Africa or Australia)”. 

Over 500 studies were downloaded and examined, and only studies focused on global or continental scale were kept. We organized the results by 

the geographical regions, including global scale (wet and dry regions), temperate, wet subtropical and dry subtropical, and tropical regions in both 

North and South Hemisphere. We focused on the annual and seasonal precipitation amount, precipitation intensity, and extreme events (but it was 

not defined in most studies). We also searched for the articles about trend and/or projection of precipitation in Taiwan. In total, 125 related studies 

were used to create the table.

  

Precipitation Seasonal rainfall, heavy or extreme events

Amount Intensity Heavy/Extreme Spring Summer Autumn Winter

Global ∆27−31↓32↑30,33 ↑34,35 ↑36↑34,37 ↓31,38 ↑38 ↑38 ↓38

Wet regions ↑39−42↑43,44 ↑45 ↑46,47

Dry regions ↓39−41↓43 ↓46



North 
Hemisphere

Boreal ∆48↑49−51↑49,52,53 ↑54 ∆55↑54,56−58 ↑59↑60 ↑61 ↑62↑60,61,63−65

Temperate ∆48↑49,50,66,67↑49,52,6

8

∆69↑45↑54,7

0,71

∆72↓73↑54,57,66,74−82↑
83,84

↑85↑86−88 ↑89↓60,90−92↑
86,93−95

↓85↑86,88 ↑62,67,85,96↑71,8

7,88,92,94↓60

Wet Subtropics ∆51,97↑66,98−100↑98−10

1↓53

↑102↑70 ∆72↑73,74,79,80,102−105 
↑79,83,97,104,106−108

↑85↓109 ↑109↑90,93,95,11

0↓65

↓85 ↑85↓109↓71,11

0

Dry Subtropics ∆51,111↑112,113↓66,9,10

0,114,115↓52,53,99,100,106,

116−118

↑119↑70 ∆72↓81↑75,79,120↑79,83,

108,120

↓121↑122 ↑122

Tropics ∆123↑50,115,124−127↓12

8↓52,128

↑127↑70 ↑129,130↑83,108,131 ↓132 ↑133↓134↑110,

135↓136

↑137,132↓110

South 
Hemisphere

Boreal

Temperate ↑52 ↓138

Wet Subtropics ∆51↑52,101,139↓53 ↑45↑70 ∆72↑140 ↑138 ↓141 ↓141

Dry Subtropics ∆51↓50,98,115,142↓53,98

,118,143

↑144 ∆72 ↑138↓145

Tropics ↑115,124↑52 ↑70,144 ∆72 ↑146



Taiwan ↑147 ↓148↓148 ↑148,149↑148,149 ↓148↓148

North ↑150,151↑150

South ↓150↓150

The subtropics are divided into wet and dry sub-categories. The dry subtopics include subtropical deserts and semi-arid regions and wet subtropics 

includes central-south China, south of Japan, south of America, south-east South America, south-east Australia (152). The pink (↓) and red (↓) 

arrows indicated that there are declining trends of precipitation from observed and projected results. The cyan (↑) and blue (↑) arrows indicated 

that there are increasing trends of precipitation from observed and projected results respectively. The gray (∆) and black triangle (∆) suggested that 

there were no significant trends of observed and projected simulations.



Fig. S1. The geographical location map of Fushan Experimental Forest (FEF) and sampling sites in 

watershed one (WS1).



Fig. S2. Distribution, forest type and precipitation of the 32 forest sites in Figure 2 and Table S1. 

 (Source of forest types in background: Global Land Cover Facility: www.landcover.org) (153).

http://www.landcover.org


Fig. S3. Annual precipitation during 19942013 and monthly precipitation during 20092012 at the 

Fushan Experimental Forest. Error bars indicate one standard deviation.



Fig. S4. Estimated annual contribution of base flow (i.e., groundwater) input (BFI) to streamflow (i.e., 

through groundwater recharge) during rainy days and rainless days. The result was derived from a 

hydrological model (HBV-2) (154) using data from seven years (1995, 1996, 1998, 2007, 2008, 2010 

and 2011). In the analysis, rainy days were defined as a successive raining period with the amount of 

rain over 10 mm. Error bars indicate one standard deviation.
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