114 research outputs found

    Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells

    Get PDF
    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement – a stage between initial cellular internalization and final gene silencing of siRNA delivery systems

    Towards a classification strategy for complex nanostructures

    Get PDF
    The range of possible nanostructures is so large and continuously growing, that collating and unifying the knowledge connected to them, including their biological activity, is a major challenge. Here we discuss a conception that is based on connection of microscopic features of the nanomaterials to their biological impacts. We also consider what would be necessary to identify the features that control their biological interactions, and make them resemble each other in a biological context

    A Novel Docetaxel-Loaded Poly (ε-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    Get PDF
    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ε-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere®in the MCF-7 TAX30 cell culture, but the differences were not significant (p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere®(p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer

    Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering

    Get PDF
    The inability to deliver bioactive agents locally in a transient but sustained manner is one of the challenges on the development of bio-functionalized scaffolds for tissue engineering (TE) and regenerative medicine. The mode of release is especially relevant when the bioactive agent is a growth factor (GF), because the dose and the spatiotemporal release of such agents at the site of injury are crucial to achieve a successful outcome. Strategies that combine scaffolds and drug delivery systems have the potential to provide more effective tissue regeneration relative to current therapies. Nanoparticles (NPs) can protect the bioactive agents, control its profile, decrease the occurrence and severity of side effects and deliver the bioactive agent to the target cells maximizing its effect. Scaffolds containing NPs loaded with bioactive agents can be used for their local delivery, enabling site-specific pharmacological effects such as the induction of cell proliferation and differentiation, and, consequently, neo-tissue formation. This review aims to describe the concept of combining NPs with scaffolds, and the current efforts aiming to develop highly multi-functional bioactive agent release systems, with the emphasis on their application in TE of connective tissues.POLARIS (REGPOT-CT2012-316331-POLARIS), RL3 – TECT – NORTE-01-0124-FEDER-000020, co-financed by North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), the OsteoGraphy (PTDC/EME-MFE/2008) and MaxBone (PTDC/SAU-ENB/115179/2009) project

    Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections

    Get PDF
    The nucleus is the most prominent cellular organelle, and its sharp boundaries suggest the compartmentalization of the nucleoplasm from the cytoplasm. However, the recent identification of evolutionarily conserved linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes, a family of macromolecular assemblies that span the double membrane of the nuclear envelope, reveals tight physical connections between the two compartments. Here, we review the structure and evolutionary conservation of SUN and KASH domain–containing proteins, whose interaction within the perinuclear space forms the “nuts and bolts” of LINC complexes. Moreover, we discuss the function of these complexes in nuclear, centrosomal, and chromosome dynamics, and their connection to human disease

    Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons

    Get PDF
    During herpes simplex virus 1 (HSV1) egress in neurons, viral particles travel from the neuronal cell body along the axon towards the synapse. Whether HSV1 particles are transported as enveloped virions as proposed by the ‘married’ model or as non-enveloped capsids suggested by the ‘separate’ model is controversial. Specific viral proteins may form a recruitment platform for microtubule motors that catalyze such transport. However, their subviral location has remained elusive. Here we established a system to analyze herpesvirus egress by cryo electron tomography. At 16 h post infection, we observed intra-axonal transport of progeny HSV1 viral particles in dissociated hippocampal neurons by live-cell fluorescence microscopy. Cryo electron tomography of frozen-hydrated neurons revealed that most egressing capsids were transported independently of the viral envelope. Unexpectedly, we found not only DNA-containing capsids (cytosolic C-capsids), but also capsids lacking DNA (cytosolic A-/B-capsids) in mid-axon regions. Subvolume averaging revealed lower amounts of tegument on cytosolic A-/B-capsids than on C-capsids. Nevertheless, all capsid types underwent active axonal transport. Therefore, even few tegument proteins on the capsid vertices seemed to suffice for transport. Secondary envelopment of capsids was observed at axon terminals. On their luminal face, the enveloping vesicles were studded with typical glycoprotein-like spikes. Furthermore, we noted an accretion of tegument density at the concave cytosolic face of the vesicle membrane in close proximity to the capsids. Three-dimensional analysis revealed that these assembly sites lacked cytoskeletal elements, but that filamentous actin surrounded them and formed an assembly compartment. Our data support the ‘separate model’ for HSV1 egress, i.e. progeny herpes viruses being transported along axons as subassemblies and not as complete virions within transport vesicles

    Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects-An Updated Review.

    Get PDF
    This review covers developments in studies of nanomaterials (NMs) in the environment, since the much-cited review of Klaine et al. (2008). It discusses novel insights on fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms and environmental impacts, with a focus on terrestrial and aquatic systems. Overall the findings were that: i) despite the substantial developments, there remain critical gaps, in large part due to the lack of analytical, modelling and field capabilities and in part due to the breadth and complexity of the area; ii) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; iii) there is substantial evidence that there are nano-specific effects (different from both ions and larger particles) in the environment in terms of fate, bioavailability and toxicity, but this is not consistent for all NMs, species and all relevant processes; iv) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; v) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, however, with the uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. This article is protected by copyright. All rights reserved
    corecore