182 research outputs found

    Recent glitches detected in the Crab pulsar

    Full text link
    From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches ΔΜp\Delta\nu_{p} and ΔΜ˙p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is ∌\sim 6.8 ×10−6\times 10^{-6} Hz, ∌\sim 3.5 times that of the glitch occured in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant ∌\sim 21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc

    Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons

    Full text link
    Using data collected with the BESII detector at e+e−e^{+}e^{-} storage ring Beijing Electron Positron Collider, the measurements of relative branching fractions for seven Cabibbo suppressed hadronic weak decays D0→K−K+D^0 \to K^- K^+, π+π−\pi^+ \pi^-, K−K+π+π−K^- K^+ \pi^+ \pi^- and π+π+π−π−\pi^+ \pi^+ \pi^- \pi^-, D+→K0ˉK+D^+ \to \bar{K^0} K^+, K−K+π+K^- K^+ \pi^+ and π−π+π+\pi^- \pi^+ \pi^+ are presented.Comment: 11 pages, 5 figure

    The CP violating phase \delta_{13} and the quark mixing angles \theta_{13}, \theta_{23} and \theta_{12} from flavour permutational symmetry breaking

    Full text link
    The phase equivalence of the theoretical mixing matrix Vth{\bf V}^{th} derived from the breaking of the flavour permutational symmetry and the standard parametrization VPDG{\bf V}^{PDG} advocated by the Particle Data Group is explicitly exhibited. From here, we derive exact explicit expressions for the three mixing angles ξ12\theta_{12}, ξ13\theta_{13}, ξ23\theta_{23}, and the CP violating phase ή13\delta_{13} in terms of the quark mass ratios (mu/mt,mc/mt,md/mb,ms/mb)(m_{u}/m_{t}, m_{c}/m_{t}, m_{d}/m_{b}, m_{s}/m_{b}) and the parameters Z∗1/2Z^{*1/2} and Ω∗\Phi^* characterizing the preferred symmetry breaking pattern. The computed values for the CP violating phase and the mixing angles are: ή13∗=75∘\delta^*_{13}=75^\circ, sin⁡ξ12∗=0.221\sin\theta^*_{12}=0.221, sin⁡ξ13∗=0.0034\sin\theta^*_{13}=0.0034, and sin⁡ξ23∗=0.040\sin\theta^*_{23}=0.040, which coincide almost exactly with the central values of the experimentally determined quantities.Comment: 25 pages, we added an estimation of a reasonable range of values for the quark mass ratios and the corresponding quark mixing matrix elements. Accepted in Phys. Rev. D, 01 April 200

    Expulsion of Magnetic Flux Lines from the Growing Superconducting Core of a Magnetized Quark Star

    Full text link
    The expulsion of magnetic flux lines from a growing superconducting core of a quark star has been investigated. The idea of impurity diffusion in molten alloys and an identical mechanism of baryon number transport from hot quark-gluon-plasma phase to hadronic phase during quark-hadron phase transition in the early universe, micro-second after big bang has been used. The possibility of Mullins-Sekerka normal-superconducting interface instability has also been studied.Comment: Thoroughly revised version. Accepted for Astrophysics & Space Scienc

    On the Low Surface Magnetic Field Structure of Quark Stars

    Full text link
    Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch \cite{H1,H2,H3}, a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. We have also analysed the instability of normal-superconducting interface due to excess accumulation of magnetic flux lines, assuming an extremely slow growth of superconducting phase through a first order bubble nucleation type transition.Comment: 24 pages REVTEX, one .eps figure, psfig.sty is include

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 ÎŒb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, Δ2 and Δ3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with Δm−Δn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction
    • 

    corecore