1,751 research outputs found

    GaSb on GaAs interfacial misfit solar cells

    Get PDF
    The GaAs/GaSb interface misfit design can achieve comparable efficiency to conventional inverted metamorphic multijunction cells at up to 30% cost reduction. In this pre-liminary work, GaSb single junctions were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare and fine tune the interfacial misfit growth process. Current vs voltage results show that the best homo-epitaxial cell achieved 5.2% under 35-sun concentration. TEM did not reveal any threading dislocations in the hetero-epitaxial cells, however, device results indicated higher non-radiative recombination than expected, likely due to unpassivated surface states. Improvements to cell processing will be explored and more characterization is planned to determine the cause of degraded hetero-epitaxial cell performance

    Lack of a significant legacy effect of baseline blood pressure 'treatment naivety' on all-cause and cardiovascular mortality in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial

    Get PDF
    Objectives: To investigate legacy effects at 14-year follow-up of all-cause and cardiovascular disease (CVD) mortality in 'treatment-naive' or 'previous treatment' groups based on blood pressure (BP)-lowering treatment status at baseline. Methods: A post-hoc observational study of the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. We excluded participants with a previous history of CVD events. Cox proportional hazard model and 95% confidence interval were used to estimate the effects of treatment naive on mortality outcomes. Moreover, a subgroup analysis by estimated 10-year Framingham risk score was performed. Results: In multivariable models adjusting for baseline and in-trial characteristics (BP values and number of BP medications as time-dependent variables), there was no statistically significant difference in 5 and 14-year all-cause mortality with a hazard ratio of 0.93 (95% confidence interval 0.80-1.09) and hazard ratio 0.95 (0.88-1.03) and in 5 and 14-year CVD mortality hazard ratio 0.94 (0.72-1.23) and hazard ratio 0.93 (0.80-1.08). In subgroup by absolute CVD risk, no heterogeneity of the association between treatment naive and short-term or long-term all-cause or CVD mortality were found. All comparisons are between the treatment-naive and previous treatment groups. Conclusion: Physicians are concerned about 'legacy effects' of not treating individuals with a BP of 140 mmHg or over and low absolute risk. When treatment intensification was taken into consideration in the primary prevention population in this study, no adverse legacy effect as a result of baseline BP 'treatment naivety' was evident in 14 years of follow-up. The nonsignificant associations were consistent across the CVD risk subgroups. However, the results may be biased due to unobserved residual confounding and therefore should be interpreted with caution

    GaSb solar cells grown on GaAs via interfacial misfit arrays for use in the III-Sb multi-junction cell

    Get PDF
    Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration

    Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain

    Get PDF
    BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Search for Exclusive Charmless Hadronic B Decays

    Get PDF
    We have searched for two-body charmless hadronic decays of BB mesons. Final states include ππ\pi\pi, KπK \pi, and KKKK with both charged and neutral kaons and pions; πρ\pi\rho, KρK \rho, and KπK^*\pi; and KϕK\phi, Kϕ K^*\phi, and ϕϕ\phi\phi. The data used in this analysis consist of 2.6~million BBˉB\bar{B}~pairs produced at the Υ(4S)\Upsilon(4S) taken with the CLEO-II detector at the Cornell Electron Storage Ring (CESR). We measure the branching fraction of the sum of B0π+πB^0 \rightarrow \pi^+\pi^- and B0K+πB^0 \rightarrow K^+\pi^- to be (1.80.50.3+0.6+0.2±0.2)×105(1.8^{+0.6+0.2}_{-0.5-0.3}\pm0.2) \times 10^{-5}. In addition, we place upper limits on individual branching fractions in the range from 10410^{-4} to 10610^{-6}.Comment: 33 page LATEX file, uses REVTEX and psfig, 14 figures in a separate uuencoded postscript file, postscript version also available through http://w4.lns.cornell.edu/public/CLN

    Observation of Exclusive Two-Body B Decays to Kaons and Pions

    Get PDF
    We have studied two-body charmless hadronic decays of B mesons into the final states ππ\pi\pi, KπK \pi, and KKKK. Using 3.3 million BBˉB\bar{B} pairs collected with the CLEO-II detector, we have made the first observation of the decays B0K+πB^0\to K^+\pi^-, B+K0π+B^+\to K^0\pi^+, and the sum of B+π+π0B^+ \to \pi^+\pi^0 and B+K+π0B^+ \to K^+\pi^0 decays (an average over charge-conjugate states is always implied). We place upper limits on branching fractions for the remaining decay modes.Comment: 9 page postscript file, postscript file also available through http://w4.lns.cornell.edu/public/CLN

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore