171 research outputs found

    Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer

    Get PDF
    BACKGROUND: Recently, instruments for the measurement of wavefront aberration in the living human eye have been widely available for clinical applications. Despite the extensive background experience on wavefront sensing for research purposes, the information derived from such instrumentation in a clinical setting should not be considered a priori precise. We report on the variability of such an instrument at two different pupil sizes. METHODS: A clinical aberrometer (COAS Wavefront Scienses, Ltd) based on the Shack-Hartmann principle was employed in this study. Fifty consecutive measurements were perfomed on each right eye of four subjects. We compared the variance of individual Zernike expansion coefficients as determined by the aberrometer with the variance of coefficients calculated using a mathematical method for scaling the expansion coefficients to reconstruct wavefront aberration for a reduced-size pupil. RESULTS: Wavefront aberration exhibits a marked variance of the order of 0.45 microns near the edge of the pupil whereas the central part appears to be measured more consistently. Dispersion of Zernike expansion coefficients was lower when calculated by the scaling method for a pupil diameter of 3 mm as compared to the one introduced when only the central 3 mm of the Shack – Hartmann image was evaluated. Signal-to-noise ratio was lower for higher order aberrations than for low order coefficients corresponding to the sphero-cylindrical error. For each subject a number of Zernike expansion coefficients was below noise level and should not be considered trustworthy. CONCLUSION: Wavefront aberration data used in clinical care should not be extracted from a single measurement, which represents only a static snapshot of a dynamically changing aberration pattern. This observation must be taken into account in order to prevent ambiguous conclusions in clinical practice and especially in refractive surgery

    Short-term breast cancer survival in relation to ethnicity, stage, grade and receptor status: national cohort study in England.

    Get PDF
    In the re-organisation of cancer registration in England in 2012, a high priority was given to the recording of cancer stage and other prognostic clinical data items. We extracted 86 852 breast cancer records for women resident in England and diagnosed during 2012-2013. Information on age, ethnicity, socio-economic status, comorbidity, tumour stage, grade, morphology and oestrogen, progesterone and HER2 receptor status was included. The two-year cumulative risk of death from any cause was estimated with the Kaplan-Meier method, and univariate and multivariate Cox proportional hazards regressions were used to estimate hazard ratios (HR) and their 95% confidence intervals (95% CI). The follow-up ended on 31 December 2014. The completeness of registration for prognostic variables was generally high (around 80% or higher), but it was low for progesterone receptor status (41%). Women with negative receptor status for each of the oestrogen, progesterone and HER2 receptors (triple-negative cancers) had an adjusted HR for death of 2.00 (95%CI 1.84-2.17). Black women had an age-adjusted HR of 1.77 (1.48-2.13) compared with White women. The excess mortality of Black women with breast cancer has contributions from socio-economic factors, stage distribution and tumour biology. The study illustrates the richness of detail in the national cancer registration data. This allows for analysis of cancer outcomes at a high level of resolution, and may form the basis for risk stratification.British Journal of Cancer advance online publication, 25 October 2016; doi:10.1038/bjc.2016.335 www.bjcancer.com

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Gravitational-wave research as an emerging field in the Max Planck Society. The long roots of GEO600 and of the Albert Einstein Institute

    Full text link
    On the occasion of the 50th anniversary since the beginning of the search for gravitational waves at the Max Planck Society, and in coincidence with the 25th anniversary of the foundation of the Albert Einstein Institute, we explore the interplay between the renaissance of general relativity and the advent of relativistic astrophysics following the German early involvement in gravitational-wave research, to the point when gravitational-wave detection became established by the appearance of full-scale detectors and international collaborations. On the background of the spectacular astrophysical discoveries of the 1960s and the growing role of relativistic astrophysics, Ludwig Biermann and his collaborators at the Max Planck Institute for Astrophysics in Munich became deeply involved in research related to such new horizons. At the end of the 1960s, Joseph Weber's announcements claiming detection of gravitational waves sparked the decisive entry of this group into the field, in parallel with the appointment of the renowned relativist Juergen Ehlers. The Munich area group of Max Planck institutes provided the fertile ground for acquiring a leading position in the 1970s, facilitating the experimental transition from resonant bars towards laser interferometry and its innovation at increasingly large scales, eventually moving to a dedicated site in Hannover in the early 1990s. The Hannover group emphasized perfecting experimental systems at pilot scales, and never developed a full-sized detector, rather joining the LIGO Scientific Collaboration at the end of the century. In parallel, the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) had been founded in Potsdam, and both sites, in Hannover and Potsdam, became a unified entity in the early 2000s and were central contributors to the first detection of gravitational waves in 2015.Comment: 94 pages. Enlarged version including new results from further archival research. A previous version appears as a chapter in the volume The Renaissance of General Relativity in Context, edited by A. Blum, R. Lalli and J. Renn (Boston: Birkhauser, 2020

    Acute oxytocin improves memory and gaze following in male but not female nursery-reared infant macaques

    Get PDF
    Rationale: Exogenous oxytocin administration is widely reported to improve social cognition in human and nonhuman primate adults. Risk factors of impaired social cognition, however, emerge in infancy. Early interventions—when plasticity is greatest—are critical to reverse negative outcomes. Objective: We tested the hypothesis that oxytocin may exert similar positive effects on infant social cognition, as in adults. To test this idea, we assessed the effectiveness of acute, aerosolized oxytocin on two foundational social cognitive skills: working memory (i.e., ability to briefly hold and process information) and social gaze (i.e., tracking the direction of others’ gaze) in 1-month-old nursery-reared macaque monkeys (Macaca mulatta). We did not predict sex differences, but we included sex as a factor in our analyses to test whether our effects would be generalizable across both males and females. Results: In a double-blind, placebo-controlled design, we found that females were more socially skilled at baseline compared to males, and that oxytocin improved working memory and gaze following, but only in males. Conclusions: These sex differences, while unexpected, may be due to interactions with gonadal steroids and may be relevant to sexually dimorphic disorders of social cognition, such as male-biased autism spectrum disorder, for which oxytocin has been proposed as a potential treatment. In sum, we report the first evidence that oxytocin may influence primate infant cognitive abilities. Moreover, these behavioral effects appear sexually dimorphic, highlighting the importance of considering sex differences. Oxytocin effects observed in one sex may not be generalizable to the other sex

    Search for CP violation in Λb0→pK− and Λb0→pπ− decays

    Get PDF
    A search for CP violation in Λb0→pK− and Λb0→pπ− decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb−1. The CP -violating asymmetries are measured to be ACPpK−=−0.020±0.013±0.019 and ACPpπ−=−0.035±0.017±0.020, and their difference ACPpK−−ACPpπ−=0.014±0.022±0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date

    Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying into b-quarks at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy neutral Higgs bosons produced in association with one or two b -quarks and decaying to b -quark pairs is presented using 27.8  fb − 1 of √ s = 13  TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider during 2015 and 2016. No evidence of a signal is found. Upper limits on the heavy neutral Higgs boson production cross section times its branching ratio to b ¯ b are set, ranging from 4.0 to 0.6 pb at 95% confidence level over a Higgs boson mass range of 450 to 1400 GeV. Results are interpreted within the two-Higgs-doublet model and the minimal supersymmetric Standard Model

    Erratum: Measurement of angular and momentum distributions of charged particles within and around jets in Pb + Pb and pp collisions at √sNN = 5.02 TeV with the ATLAS detector [Phys. Rev. C 100 , 064901 (2019)]

    Get PDF

    Measurement of single top-quark production in association with a W boson in the single-lepton channel at \sqrt{s} = 8\,\text {TeV} with the ATLAS detector

    Get PDF
    The production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at \sqrt{s} = 8\,\text {TeV}. The dataset corresponds to an integrated luminosity of 20.2\,\text {fb}^{-1}, and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant t{\bar{t}} background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is \sigma _{tW} = 26 \pm 7\,\text {pb}, in good agreement with the Standard Model expectation

    Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV

    Get PDF
    This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7
    corecore