12 research outputs found

    Aerosol optical depth in the ultraviolet range: a new product in EUBREWNET

    Get PDF
    Póster elaborado para el Quadrennial Ozone Symposium celebrado en Edinburgh los días 4–9 de septiembre de 2016The AERONET sun photometers at the Izaña station have been calibrated within the AERONET Europe TNA, supported by the European Community-Research Infrastructure Action under the FP7 ACTRIS grant agreement no. 262254

    Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

    Get PDF
    This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005±0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412nm, respectively. While searching for sources of differences among different instruments, it was found that all individual differences linked to Rayleigh, NO2, ozone, water vapor calculations and related optical depths and air mass calculations were smaller than 0.01 in aerosol optical depth (AOD) at 500 and 865nm. Different cloud-detecting algorithms used have been compared. Ångström exponent calculations showed relatively large differences among different instruments, partly because of the high calculation uncertainty of this parameter in low AOD conditions. The overall low deviations of these AOD results and the high accuracy of reference aerosol network instruments demonstrated a promising framework to achieve homogeneity, compatibility and harmonization among the different spectral AOD networks in the near future

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    Climate Change in the Baltic Sea Region: A Summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in climate of the Baltic Sea region is summarized and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focusses on the atmosphere, land, cryosphere, ocean, sediments and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in paleo-, historical and future regional climate research, we find that the main conclusions from earlier assessments remain still valid. However, new long-term, homogenous observational records, e.g. for Scandinavian glacier inventories, sea-level driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution and new scenario simulations with improved models, e.g. for glaciers, lake ice and marine food web, have become available. In many cases, uncertainties can now be better estimated than before, because more models can be included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth System have been studied and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication and climate change. New data sets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal time scales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first paleoclimate simulations regionalized for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA) and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics is dominated by tides, the Baltic Sea is characterized by brackish water, a perennial vertical stratification in the southern sub-basins and a seasonal sea ice cover in the northern sub-basins</p

    Climate change in the Baltic Sea region: a summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins

    Validation of SeaWiFS and MODIS Aqua/Terra aerosol products in coastal regions of European marginal seas

    No full text
    The aerosol products associated with the ocean colour missions SeaWiFS and MODIS (both Aqua and Terra) are assessed with AERONET field measurements collected in four European marginal seas for which fairly large uncertainties in ocean colour in-water products have been documented, the northern Adriatic, the Baltic, Black and North Seas. On average, more than 500 match-ups are found for each basin and satellite mission, showing an overall consistency of validation statistics across the three missions. The median absolute relative difference between satellite and field values of aerosol optical thickness τa at 443 nm varies from 12% to 15% for the three missions at the northern Adriatic and Black Sea sites, and from 13% to 26% for the Baltic and North Sea sites. It is in the interval 16-31% for the near-infrared band. The spectral shape of τa is well reproduced with a median bias of the Ångström exponent varying between -15% and +14%, which represents a clear improvement with respect to previous versions of the atmospheric correction scheme. These results show that the uncertainty associated with τa in the considered coastal waters of the European marginal seas is comparable to global validation statistics.JRC.H.1-Water Resource

    Validation of SeaWiFS and MODIS Aqua-Terra aerosol products in coastal regions of European marginal seas

    No full text
    The aerosol products associated with the ocean colour missions SeaWiFS andMODIS (both Aqua and Terra) are assessed with AERONET field measurementscollected in four European marginal seas for which fairly large uncertainties inocean colour in-water products have been documented: the northern Adriatic, theBaltic, Black and North Seas. On average, more than 500 match-ups are foundfor each basin and satellite mission, showing an overall consistency of validationstatistics across the three missions. The median absolute relative differencebetween satellite and field values of aerosol optical thickness τaat 443 nm varies from 12% to 15% for the three missions at the northernAdriatic and Black Sea sites, and from 13% to 26% for the Baltic and North Sea sites. It is in the interval 16-31% for the near-infrared band. The spectral shape of τaiswell reproduced with a median bias of the Ängström exponent varyingbetween -15% and +14%, which represents a clear improvement with respectto previous versions of the atmospheric correction scheme. These results showthat the uncertainty associated with τa in the considered coastalwaters of the European marginal seas is comparable to global validationstatistic

    Overview of Sun photometer measurements of aerosol properties in Scandinavia and Svalbard

    Get PDF
    An overview on the data of columnar aerosol properties measured in Northern Europe is provided. Apart from the necessary data gathered in the Arctic, the knowledge of the aerosol loading in nearby areas (e.g. sub-Arctic) is of maximum interest to achieve a correct analysis of the Arctic aerosols and transport patterns. This work evaluates data from operational sites with sun photometer measurements belonging either to national or international networks (AERONET, GAW-PFR) and programs conducted in Scandi- navia and Svalbard. We enumerate a list of sites, measurement type and periods together with observed aerosol properties. An evaluation and analysis of aerosol data was carried out with a review of previous results as well. Aerosol optical depth (AOD) and Ångström exponent (AE) are the current parameters with suf␣cient long-term records for a ␣rst evaluation of aerosol properties. AOD (500 nm) ranges from 0.08 to 0.10 in Arctic and sub-Arctic sites (Ny-Ålesund: 0.09; Andenes: 0.10; Sodankylä: 0.08), and it is somewhat higher in more populated areas in Southern Scandinavia (AOD about 0.10e0.12 at 500 nm). On the Norwegian coast, aerosols show larger mean size (AE � 1.2 at Andenes) than in Finland, with continental climate (AE � 1.5 at Sodankylä). Columnar particle size distributions and related parameters derived from inversion of sun/sky radiances were also investigated. This work makes special emphasis in the joint and collaborative effort of the various groups from different countries involved in this study. Part of the measurements presented here were involved in the IPY projects Polar-AOD and POLARCAT

    Aerosol optical depth in the European Brewer Network

    Get PDF
    Aerosols play an important role in key atmospheric processes and feature high spatial and temporal variabilities. This has motivated scientific interest in the development of networks capable of measuring aerosol properties over large geographical areas in near-real time. In this work we present and discuss results of an aerosol optical depth (AOD) algorithm applied to instruments of the European Brewer Network. This network is comprised of close to 50 Brewer spectrophotometers, mostly located in Europe and adjacent areas, although instruments operating at, for example, South America and Australia are also members. Although we only show results for instruments calibrated by the Regional Brewer Calibration Center for Europe, the implementation of the AOD algorithm described is intended to be used by the whole network in the future. Using data from the Brewer intercomparison campaigns in the years 2013 and 2015, and the period in between, plus comparisons with Cimel sun photometers and UVPFR instruments, we check the precision, stability, and uncertainty of the Brewer AOD in the ultraviolet range from 300 to 320 nm. Our results show a precision better than 0.01, an uncertainty of less than 0.05, and, for well-maintained instruments, a stability similar to that of the ozone measurements. We also discuss future improvements to our algorithm with respect to the input data, their processing, and the characterization of the Brewer instruments for the measurement of AOD
    corecore