186 research outputs found
Cortisol levels are positively associated with pup-feeding rates in male meerkats
In societies of cooperative vertebrates, individual differences in contributions to offspring care are commonly substantial. Recent attempts to explain the causes of this variation have focused on correlations between contributions to care and the protein hormone prolactin, or the steroid hormone testosterone. However, such studies have seldom considered the importance of other hormones or controlled for non-hormonal factors that are correlative with both individual hormone levels and contributions to care. Using multivariate statistics, we show that hormone levels explain significant variation in contributions to pup-feeding by male meerkats, even after controlling for non-hormonal effects. However, long-term contributions to pup provisioning were significantly and positively correlated with plasma levels of cortisol rather than prolactin, while plasma levels of testosterone were not related to individual patterns of pup-feeding. Furthermore, a playback experiment that used pup begging calls to increase the feeding rates of male helpers gave rise to parallel increases in plasma cortisol levels, whilst prolactin and testosterone levels remained unchanged. Our findings confirm that hormones can explain significant amounts of variation in contributions to offspring feeding, and that cortisol, not prolactin, is the hormone most strongly associated with pup-feeding in cooperative male meerkats
Cortisol levels are positively associated with pup-feeding rates in male meerkats
In societies of cooperative vertebrates, individual differences in contributions to offspring care are commonly substantial. Recent attempts to explain the causes of this variation have focused on correlations between contributions to care and the protein hormone prolactin, or the steroid hormone testosterone. However, such studies have seldom considered the importance of other hormones or controlled for non-hormonal factors that are correlative with both individual hormone levels and contributions to care. Using multivariate statistics, we show that hormone levels explain significant variation in contributions to pup-feeding by male meerkats, even after controlling for non-hormonal effects. However, long-term contributions to pup provisioning were significantly and positively correlated with plasma levels of cortisol rather than prolactin, while plasma levels of testosterone were not related to individual patterns of pup-feeding. Furthermore, a playback experiment that used pup begging calls to increase the feeding rates of male helpers gave rise to parallel increases in plasma cortisol levels, whilst prolactin and testosterone levels remained unchanged. Our findings confirm that hormones can explain significant amounts of variation in contributions to offspring feeding, and that cortisol, not prolactin, is the hormone most strongly associated with pup-feeding in cooperative male meerkats
Translationally invariant treatment of pair correlations in nuclei: II. Tensor correlations
We study the extension of our translationally invariant treatment of few-body
nuclear systems to include tensor forces and correlations. It is shown that a
direct application of our method is not as successful for realistic V6
interactions as our previous results for V4 potentials suggested. We
investigate the cause in detail for the case of He, and show that a
combination of our method with that of Jastrow-correlated wave functions seems
to be a lot more powerful, thereby suggesting that for mildly to strongly
repulsive forces such a hybrid procedure may be an appropriate description.Comment: 19 pages, 3 ps figures. uses elsart, graphicx, amssym
Phenomenology of Particle Production and Propagation in String-Motivated Canonical Noncommutative Spacetime
We outline a phenomenological programme for the search of effects induced by
(string-motivated) canonical noncommutative spacetime. The tests we propose are
based, in analogy with a corresponding programme developed over the last few
years for the study of Lie-algebra noncommutative spacetimes, on the role of
the noncommutativity parameters in the dispersion relation. We focus on
the role of deformed dispersion relations in particle-production collision
processes, where the noncommutativity parameters would affect the threshold
equation, and in the dispersion of gamma rays observed from distant
astrophysical sources. We emphasize that the studies here proposed have the
advantage of involving particles of relatively high energies, and may therefore
be less sensitive to "contamination" (through IR/UV mixing) from the UV sector
of the theory. We also explore the possibility that the relevant deformation of
the dispersion relations could be responsible for the experimentally-observed
violations of the GZK cutoff for cosmic rays and could have a role in the
observation of hard photons from distant astrophysical sources.Comment: With respect to the experimental information available at the time of
writing version 1 of this manuscript (hep-th/0109191v1) the situation has
evolved significantly. Our remarks on the benefits of high-energy
observations found additional encouragement from the results reported in
hep-th/020925
Investigation of the Exclusive 3He(e,e'pp)n Reaction
Cross sections for the 3He(e,e'pp)n reaction were measured over a wide range
of energy and three- momentum transfer. At a momentum transfer q=375 MeV/c,
data were taken at transferred energies omega ranging from 170 to 290 MeV. At
omega=220 MeV, measurements were performed at three q values (305, 375, and 445
MeV/c). The results are presented as a function of the neutron momentum in the
final-state, as a function of the energy and momentum transfer, and as a
function of the relative momentum of the two-proton system. The data at neutron
momenta below 100 MeV/c, obtained for two values of the momentum transfer at
omega=220 MeV, are well described by the results of continuum-Faddeev
calculations. These calculations indicate that the cross section in this domain
is dominated by direct two-proton emission induced by a one-body hadronic
current. Cross section distributions determined as a function of the relative
momentum of the two protons are fairly well reproduced by continuum-Faddeev
calculations based on various realistic nucleon-nucleon potential models. At
higher neutron momentum and at higher energy transfer, deviations between data
and calculations are observed that may be due to contributions of isobar
currents.Comment: 14 pages, 1 table, 17 figure
Reconstruction and regional significance of the Coire Breac palaeoglacier, Glen Esk, eastern Grampian Highlands, Scotland
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas-age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibriumline altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 x 106 m3, and a maximum basal shear stress of c. 100 kPa-1. Ablation gradient was c. -0.0055 m m-1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre-Lateglacial Interstadial age cannot be ruled out
Low-mass pre--main-sequence stars in the Magellanic Clouds
[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar
stars form in very large numbers. Most attractive places for catching low-mass
star formation in the act are young stellar clusters and associations, still
(half-)embedded in star-forming regions. The low-mass stars in such regions are
still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature
of these objects and the contamination of their samples by the evolved
populations of the Galactic disk impose demanding observational techniques for
the detection of complete numbers of PMS stars in the Milky Way. The Magellanic
Clouds, the companion galaxies to our own, demonstrate an exceptional star
formation activity. The low extinction and stellar field contamination in
star-forming regions of these galaxies imply a more efficient detection of
low-mass PMS stars than in the Milky Way, but their distance from us make the
application of special detection techniques unfeasible. Nonetheless, imaging
with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS
stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of
such objects are identified as the low-mass stellar content of their
star-forming regions, changing completely our picture of young stellar systems
outside the Milky Way, and extending the extragalactic stellar IMF below the
persisting threshold of a few solar masses. This review presents the recent
developments in the investigation of PMS stars in the Magellanic Clouds, with
special focus on the limitations by single-epoch photometry that can only be
circumvented by the detailed study of the observable behavior of these stars in
the color-magnitude diagram. The achieved characterization of the low-mass PMS
stars in the Magellanic Clouds allowed thus a more comprehensive understanding
of the star formation process in our neighboring galaxies.Comment: Review paper, 26 pages (in LaTeX style for Springer journals), 4
figures. Accepted for publication in Space Science Review
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
- …
