262 research outputs found

    Introducing SPeDE : high-throughput dereplication and accurate determination of microbial diversity from matrix-assisted laser desorption-ionization time of flight mass spectrometry data

    Get PDF
    The isolation of microorganisms from microbial community samples often yields a large number of conspecific isolates. Increasing the diversity covered by an isolate collection entails the implementation of methods and protocols to minimize the number of redundant isolates. Matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry methods are ideally suited to this dereplication problem because of their low cost and high throughput. However, the available software tools are cumbersome and rely either on the prior development of reference databases or on global similarity analyses, which are inconvenient and offer low taxonomic resolution. We introduce SPeDE, a user-friendly spectral data analysis tool for the dereplication of MALDI-TOF mass spectra. Rather than relying on global similarity approaches to classify spectra, SPeDE determines the number of unique spectral features by a mix of global and local peak comparisons. This approach allows the identification of a set of nonredundant spectra linked to operational isolation units. We evaluated SPeDE on a data set of 5,228 spectra representing 167 bacterial strains belonging to 132 genera across six phyla and on a data set of 312 spectra of 78 strains measured before and after lyophilization and subculturing. SPeDE was able to dereplicate with high efficiency by identifying redundant spectra while retrieving reference spectra for all strains in a sample. SPeDE can identify distinguishing features between spectra, and its performance exceeds that of established methods in speed and precision. SPeDE is open source under the MIT license and is available from https://github.com/LM-UGent/SPeDE. IMPORTANCE Estimation of the operational isolation units present in a MALDI-TOF mass spectral data set involves an essential dereplication step to identify redundant spectra in a rapid manner and without sacrificing biological resolution. We describe SPeDE, a new algorithm which facilitates culture-dependent clinical or environmental studies. SPeDE enables the rapid analysis and dereplication of isolates, a critical feature when long-term storage of cultures is limited or not feasible. We show that SPeDE can efficiently identify sets of similar spectra at the level of the species or strain, exceeding the taxonomic resolution of other methods. The high-throughput capacity, speed, and low cost of MALDI-TOF mass spectrometry and SPeDE dereplication over traditional gene marker-based sequencing approaches should facilitate adoption of the culturomics approach to bacterial isolation campaigns

    Reconstruction multiclasse pour l'imagerie TEP 3-photons

    Full text link
    This contribution addresses the problem of image reconstruction of radioactivity distribution for which the available information arises from several classes of data, each associated with a specific combination of detections. We introduce a theoretical framework to measure the amount of information brought by each class and we develop an iterative algorithm dedicated to multi-class reconstruction based on maximum likelihood.We apply our approach to the XEMIS2 camera, a preclinical prototype of a Compton telescope dedicated to 3-photon PET imaging for which four distinct classes of partial detections coexist with the full detection class.Based on Monte Carlo simulations, we present the first elements of our model.Comment: in French language, GRETSI'23, Groupe de Recherche et d'Etudes de Traitement du Signal et des Images, Aug 2023, Grenoble, Franc

    Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process based ecosystem modelling

    Get PDF
    Forest biomass and carbon monitoring play a key role in climate change mitigation. Operational large area monitoring approaches are needed to enable forestry stakeholders to meet the increasing monitoring and reporting requirements. Here, we demonstrate the functionality of a cloud-based approach utilizing Sentinel-2 composite imagery and process-based ecosystem model to produce large area forest volume and primary production estimates. We describe the main components of the approach and implementation of the processing pipeline into the Forestry TEP cloud processing platform and produce four large area output maps: (1) Growing stock volume (GSV), (2) Gross primary productivity (GPP), (3) Net primary productivity (NPP) and (4) Stem volume increment (SVI), covering Finland and the Russian boreal forests until the Ural Mountains in 10 m spatial resolution. The accuracy of the forest structural variables evaluated in Finland reach pixel level relative Root Mean Square Error (RMSE) values comparable to earlier studies (basal area 39.4%, growing stock volume 58.5%, diameter 35.5% and height 33.5%), although most of the earlier studies have concentrated on smaller study areas. This can be considered a positive sign for the feasibility of the approach for large area primary production modelling, since forest structural variables are the main input for the process-based ecosystem model used in the study. The full coverage output maps show consistent quality throughout the target area, with major regional variations clearly visible, and with noticeable fine details when zoomed into full resolution. The demonstration conducted in this study lays foundation for further development of an operational large area forest monitoring system that allows annual reporting of forest biomass and carbon balance from forest stand level to regional analyses. The system is seamlessly aligned with process based ecosystem modelling, enabling forecasting and future scenario simulation.Peer reviewe

    A Metastable Intermediate State of Microtubule Dynamic Instability That Differs Significantly between Plus and Minus Ends

    Get PDF
    The current two-state GTP cap model of microtubule dynamic instability proposes that a terminal crown of GTP-tubulin stabilizes the microtubule lattice and promotes elongation while loss of this GTP-tubulin cap converts the microtubule end to shortening. However, when this model was directly tested by using a UV microbeam to sever axoneme-nucleated microtubules and thereby remove the microtubule's GTP cap, severed plus ends rapidly shortened, but severed minus ends immediately resumed elongation (Walker, R.A., S. Inoué, and E.D. Salmon. 1989. J. Cell Biol. 108: 931–937)

    Routine use of patient reported outcome measures (PROMs) for improving treatment of common mental health disorders in adults

    Get PDF
    BACKGROUND: Routine outcome monitoring of common mental health disorders (CMHDs), using patient reported outcome measures (PROMs), has been promoted across primary care, psychological therapy and multidisciplinary mental health care settings, but is likely to be costly, given the high prevalence of CMHDs. There has been no systematic review of the use of PROMs in routine outcome monitoring of CMHDs across these three settings. OBJECTIVES: To assess the effects of routine measurement and feedback of the results of PROMs during the management of CMHDs in 1) improving the outcome of CMHDs; and 2) in changing the management of CMHDs. SEARCH METHODS: We searched the Cochrane Depression Anxiety and Neurosis group specialised controlled trials register (CCDANCTR-Studies and CCDANCTR-References), the Oxford University PROMS Bibliography (2002-5), Ovid PsycINFO, Web of Science, The Cochrane Library, and International trial registries, initially to 30 May 2014, and updated to 18 May 2015. SELECTION CRITERIA: We selected cluster and individually randomised controlled trials (RCTs) including participants with CMHDs aged 18 years and over, in which the results of PROMs were fed back to treating clinicians, or both clinicians and patients. We excluded RCTs in child and adolescent treatment settings, and those in which more than 10% of participants had diagnoses of eating disorders, psychoses, substance use disorders, learning disorders or dementia. DATA COLLECTION AND ANALYSIS: At least two authors independently identified eligible trials, assessed trial quality, and extracted data. We conducted meta-analysis across studies, pooling outcome measures which were sufficiently similar to each other to justify pooling. MAIN RESULTS: We included 17 studies involving 8787 participants: nine in multidisciplinary mental health care, six in psychological therapy settings, and two in primary care. Pooling of outcome data to provide a summary estimate of effect across studies was possible only for those studies using the compound Outcome Questionnaire (OQ-45) or Outcome Rating System (ORS) PROMs, which were all conducted in multidisciplinary mental health care or psychological therapy settings, because both primary care studies identified used single symptom outcome measures, which were not directly comparable to the OQ-45 or ORS.Meta-analysis of 12 studies including 3696 participants using these PROMs found no evidence of a difference in outcome in terms of symptoms, between feedback and no-feedback groups (standardised mean difference (SMD) -0.07, 95% confidence interval (CI) -0.16 to 0.01; P value = 0.10). The evidence for this comparison was graded as low quality however, as all included studies were considered at high risk of bias, in most cases due to inadequate blinding of assessors and significant attrition at follow-up.Quality of life was reported in only two studies, social functioning in one, and costs in none. Information on adverse events (thoughts of self-harm or suicide) was collected in one study, but differences between arms were not reported.It was not possible to pool data on changes in drug treatment or referrals as only two studies reported these. Meta-analysis of seven studies including 2608 participants found no evidence of a difference in management of CMHDs between feedback and no-feedback groups, in terms of the number of treatment sessions received (mean difference (MD) -0.02 sessions, 95% CI -0.42 to 0.39; P value = 0.93). However, the evidence for this comparison was also graded as low quality. AUTHORS' CONCLUSIONS: We found insufficient evidence to support the use of routine outcome monitoring using PROMs in the treatment of CMHDs, in terms of improving patient outcomes or in improving management. The findings are subject to considerable uncertainty however, due to the high risk of bias in the large majority of trials meeting the inclusion criteria, which means further research is very likely to have an important impact on the estimate of effect and is likely to change the estimate. More research of better quality is therefore required, particularly in primary care where most CMHDs are treated.Future research should address issues of blinding of assessors and attrition, and measure a range of relevant symptom outcomes, as well as possible harmful effects of monitoring, health-related quality of life, social functioning, and costs. Studies should include people treated with drugs as well as psychological therapies, and should follow them up for longer than six months

    Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition

    Get PDF
    Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanism of microtubule growth from the view of hydrolysis effects. Besides, the microtubule growth involves the closure of a curved sheet at its growing end. The curvature conversion also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical-chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. Firstly, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure, and the minimum conformational cap length that can stabilize the growth is demonstrated to be two dimers. Then, we show that the conformational cap can function independently of the GTP cap, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth.Comment: 23 pages, 7 figures. 2 supporting movies have not been uploaded due to the file type restriction

    Recommendations for enterovirus diagnostics and characterisation within and beyond Europe.

    Get PDF
    Enteroviruses (EV) can cause severe neurological and respiratory infections, and occasionally lead to devastating outbreaks as previously demonstrated with EV-A71 and EV-D68 in Europe. However, these infections are still often underdiagnosed and EV typing data is not currently collected at European level. In order to improve EV diagnostics, collate data on severe EV infections and monitor the circulation of EV types, we have established European non-polio enterovirus network (ENPEN). First task of this cross-border network has been to ensure prompt and adequate diagnosis of these infections in Europe, and hence we present recommendations for non-polio EV detection and typing based on the consensus view of this multidisciplinary team including experts from over 20 European countries. We recommend that respiratory and stool samples in addition to cerebrospinal fluid (CSF) and blood samples are submitted for EV testing from patients with suspected neurological infections. This is vital since viruses like EV-D68 are rarely detectable in CSF or stool samples. Furthermore, reverse transcriptase PCR (RT-PCR) targeting the 5'noncoding regions (5'NCR) should be used for diagnosis of EVs due to their sensitivity, specificity and short turnaround time. Sequencing of the VP1 capsid protein gene is recommended for EV typing; EV typing cannot be based on the 5'NCR sequences due to frequent recombination events and should not rely on virus isolation. Effective and standardized laboratory diagnostics and characterisation of circulating virus strains are the first step towards effective and continuous surveillance activities, which in turn will be used to provide better estimation on EV disease burden

    Actin Assembly at Model-Supported Lipid Bilayers

    Get PDF
    We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant—making this a practical approach for creating stable lipid-actin systems via self-assembly
    • …
    corecore