9 research outputs found

    Application of sebomics for the analysis of residual skin surface components to detect potential biomarkers of type-1 diabetes mellitus

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Metabolic imbalance in chronic diseases such as type-1 diabetes may lead to detectable perturbations in the molecular composition of residual skin surface components (RSSC). This study compared the accumulation rate and the composition of RSSC in type-1 diabetic patients with those in matched controls in order to identify potential biomarkers of the disease. Samples of RSSC were collected from the foreheads of type-1 diabetic (n = 55) and non-diabetic (n = 58) volunteers. Samples were subsequently analysed to identify individual components (sebomic analysis). There was no significant difference in the rate of accumulation of RSSC between type-1 diabetics and controls. In terms of molecular composition, 171 RSSC components were common to both groups, 27 were more common in non-diabetics and 18 were more common in type-1 diabetic patients. Statistically significant (P < 0.05) differences between diabetic and non-diabetic volunteers were observed in the recovered amounts of one diacylglyceride (m/z 594), six triacylglycerides (m/z 726-860) and six free fatty acids (m/z 271-345). These findings indicate that sebomic analysis can identify differences in the molecular composition of RSSC components between type-1 diabetic and non-diabetic individuals. Further work is required to determine the practical utility and identity of these potential biomarkers.Peer reviewedFinal Published versio

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Adoptive immunotherapy using prame-specific t cells in medulloblastoma

    No full text
    Medulloblastoma is the most frequent malignant childhood brain tumor with a high morbidity. Identification of new therapeutic targets would be instrumental in improving patient outcomes. We evaluated the expression of the tumor-associated antigen PRAME in biopsies from 60 patients with medulloblastoma. PRAME expression was detectable in 82% of tissues independent of molecular and histopathologic subgroups. High PRAME expression also correlated with worse overall survival. We next investigated the relevance of PRAME as a target for immunotherapy. Medulloblastoma cells were targeted using genetically modified T cells with a PRAME-specific TCR (SLL TCR T cells). SLL TCR T cells efficiently killed medulloblastoma HLA-A-02+ DAOY cells as well as primary HLA-A-02+ medulloblastoma cells. Moreover, SLL TCR T cells controlled tumor growth in an orthotopic mouse model of medulloblastoma. To prevent unexpected T-cell- related toxicity, an inducible caspase-9 (iC9) gene was introduced in frame with the SLL TCR; this safety switch triggered prompt elimination of genetically modified T cells. Altogether, these data indicate that T cells genetically modified with a high-affinity, PRAME-specific TCR and iC9 may represent a promising innovative approach for treating patients with HLA-A-02+ medulloblastoma. Significance: These findings identify PRAME as a medulloblastoma tumor-associated antigen that can be targeted using genetically modified T cells

    Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling

    No full text
    Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3

    Radiolabeled antibodies for the management of metastatic cancer

    No full text
    corecore