121 research outputs found

    Dispersion studies on multimode polymer spiral waveguides for board-level optical interconnects

    Get PDF
    Dispersion studies are conducted on 1m long multimode polymer spiral waveguides with different refractive index profiles. Bandwidth-length products >40GHzxm are obtained from such waveguides under a 50/125 um MMF, indicating the potential of this technology.The authors would like to acknowledge Dow Corning for providing the waveguide samples and EPSRC for supporting the work.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1109/OIC.2015.711567

    High-Bandwidth and Large Coupling Tolerance Graded-Index Multimode Polymer Waveguides for On-Board High-Speed Optical Interconnects

    Get PDF
    Optical interconnects have attracted significant research interest for use in short-reach board-level optical communication links in supercomputers and data centres. Multimode polymer waveguides in particular constitute an attractive technology for on-board optical interconnects as they provide high bandwidth, offer relaxed alignment tolerances, and can be cost-effectively integrated onto standard printed circuit boards (PCBs). However, the continuing improvements in bandwidth performance of optical sources make it important to investigate approaches to develop high bandwidth polymer waveguides. In this paper, we present dispersion studies on a graded-index (GI) waveguide in siloxane materials designed to deliver high bandwidth over a range of launch conditions. Bandwidth-length products of >70 GHzxm and ~65 GHzxm are observed using a 50/125 um multimode fibre (MMF) launch for input offsets of +/- 10 um without and with the use of a mode mixer respectively; and enhanced values of >100 GHzxm are found under a 10x microscope objective launch for input offsets of ~18 x 20 um^2. The large range of offsets is within the -1 dB alignment tolerances. A theoretical model is developed using the measured refractive index profile of the waveguide, and general agreement is found with experimental bandwidth measurements. The reported results clearly demonstrate the potential of this technology for use in high-speed board-level optical links, and indicate that data transmission of 100 Gb/s over a multimode polymer waveguide is feasible with appropriate refractive index engineering.The authors would like to acknowledge Dow Corning for providing the waveguide samples and EPSRC via the Complex Photonic Systems II (COPOS II) project for supporting the work.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/JLT.2015.250061

    Sympatric Spawning but Allopatric Distribution of Anguilla japonica and Anguilla marmorata: Temperature- and Oceanic Current-Dependent Sieving

    Get PDF
    Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24°C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them “temperate” and “tropical” eels, respectively

    Winter weather controls net influx of atmospheric CO2 on the north-west European shelf

    Get PDF
    Shelf seas play an important role in the global carbon cycle, absorbing atmospheric carbon dioxide (CO2) and exporting carbon (C) to the open ocean and sediments. The magnitude of these processes is poorly constrained, because observations are typically interpolated over multiple years. Here, we used 298500 observations of CO2 fugacity (fCO2) from a single year (2015), to estimate the net influx of atmospheric CO2 as 26.2 ± 4.7 Tg C yr-1 over the open NW European shelf. CO2 influx from the atmosphere was dominated by influx during winter as a consequence of high winds, despite a smaller, thermally-driven, air-sea fCO2 gradient compared to the larger, biologically-driven summer gradient. In order to understand this climate regulation service, we constructed a carbon-budget supplemented by data from the literature, where the NW European shelf is treated as a box with carbon entering and leaving the box. This budget showed that net C-burial was a small sink of 1.3 ± 3.1 Tg C yr-1, while CO2 efflux from estuaries to the atmosphere, removed the majority of river C-inputs. In contrast, the input from the Baltic Sea likely contributes to net export via the continental shelf pump and advection (34.4 ± 6.0 Tg C yr-1)

    gamma-rays from annihilating dark matter in galaxy clusters: stacking vs single source analysis

    Full text link
    Clusters of galaxies are potentially important targets for indirect searches for dark matter annihilation. Here we reassess the detection prospects for annihilation in massive halos, based on a statistical investigation of 1743 clusters in the new Meta-Catalog of X-ray Clusters. We derive a new limit for the extra-galactic dark matter annihilation background of at least 20% of that originating from the Galaxy for an integration angle of 0.1 deg. The number of clusters scales as a power law with their brightness, suggesting that stacking may provide a significant improvement over a single target analysis. The mean angle containing 80% of the dark-matter signal for the sample is ~0.15 deg, indicating that instruments with this angular resolution or better would be optimal for a cluster annihilation search based on stacking. A detailed study based on the Fermi-LAT performance and position-dependent background, suggests that stacking may result in a factor ~2 improvement in sensitivity, depending on the source selection criteria. Based on the expected performance of CTA, we find no improvement with stacking, due to the requirement for pointed observations. We note that several potentially important targets: Opiuchius, A2199, A3627 (Norma) and CIZAJ1324.7-5736 may be disfavoured due to a poor contrast with respect to the Galactic dark-matter signal. The use of the homogenised MCXC meta-catalogue provides a robust ranking of the targets, although the absolute value of their signal depends on the exact dark matter substructure content. For conservative assumptions, we find that galaxy clusters (with or without stacking) can probe down to 1e-25-1e-24 cm3/s for dark matter masses in the range 10 GeV-100 GeV. For more favourable substructure configurations, ~1e-26 cm3/s may be reached.Comment: 11 pages, 6+2(new) figures, impact of substructures discussed in new Sec 3.4 (matches accepted MNRAS version). Supplementary file available at http://lpsc.in2p3.fr/clumpy/downloads.htm

    Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling

    Get PDF
    The impact of ocean acidification on benthic habitats is a major preoccupation of the scientific community. However, the natural variability of pCO2 and pH in those habitats remains understudied, especially in temperate areas. In this study we investigated temporal variations of the carbonate system in nearshore macrophyte meadows of the western Baltic Sea. These are key benthic ecosystems, providing spawning and nursery areas as well as food to numerous commercially important species. In situ pCO2, pH (total scale), salinity and PAR irradiance were measured with a continuous recording sensor package dropped in a shallow macrophyte meadow (Eckernförde bay, western Baltic Sea) during three different weeks in July (pCO2 and PAR only), August and September 2011.The mean (± SD) pCO2 in July was 383±117 ”atm. The mean (± SD) pCO2 and pHtot in August were 239±20 ”atm and 8.22±0.1, respectively. The mean (± SD) pCO2 and pHtot in September were 1082±711 ”atm and 7.83±0.40, respectively. Daily variations of pCO2 due to photosynthesis and respiration (difference between daily maximum and minimum) were of the same order of magnitude: 281±88 ”atm, 219±89 ÎŒatm and 1488±574 ”atm in July, August and September respectively. The observed variations of pCO2 were explained through a statistical model considering wind direction and speed together with PAR irradiance. At a time scale of days to weeks, local upwelling of elevated pCO2 water masses with offshore winds drives the variation. Within days, primary production is responsible. The results demonstrate the high variability of the carbonate system in nearshore macrophyte meadows depending on meteorology and biological activities. We highlight the need to incorporate these variations in future pCO2 scenarios and experimental designs for nearshore habitats

    Migration from China to the EU: the challenge within Europe

    Get PDF
    At the beginning of the 21st Century, we have witnessed a rapid growth in Chinese immigration to the European Union (EU), which has had a profound impact on local Chinese communities in various ways. This chapter aims to reveal the latest developments in Chinese immigration in the EU, as well as the new dynamics, features and impacts on local Chinese communities. The above questions are addressed by a combination of secondary data analysis and our own observation in Italy and the UK in recent years. Some challenging issues facing Chinese communities are highlighted

    Assessment of trace metal contamination in a historical freshwater canal (Buckingham Canal), Chennai, India

    Get PDF
    The present study was done to assess the sources and the major processes controlling the trace metal distribution in sediments of Buckingham Canal. Based on the observed geochemical variations, the sediments are grouped as South Buckingham Canal and North Buckingham Canal sediments (SBC and NBC, respectively). SBC sediments show enrichment in Fe, Ti, Mn, Cr, V, Mo, and As concentrations, while NBC sediments show enrichment in Sn, Cu, Pb, Zn, Ni, and Hg. The calculated Chemical Index of Alteration and Chemical Index of Weathering values for all the sediments are relatively higher than the North American Shale Composite and Upper Continental Crust but similar to Post-Archaean Average Shale, and suggest a source area with moderate weathering. Overall, SBC sediments are highly enriched in Mo, Zn, Cu, and Hg (geoaccumulation index (Igeo) class 4– 6), whereas NBC sediments are enriched in Sn, Cu,Zn, and Hg (Igeo class 4–6). Cu, Ni, and Cr show higher than Effects-Range Median values and hence the biological adverse effect of these metals is 20%; Zn, which accounts for 50%, in the NBC sediments, has a more biological adverse effect than other metalsfound in these sediments. The calculated Igeo, Enrichment Factor, and Contamination Factor values indicate that Mo, Hg, Sn, Cu, and Zn are highly enriched in the Buckingham Canal sediments, suggesting the rapid urban and industrial development of Chennai MetropolitanCity have negatively influenced on the surrounding aquatic ecosystem

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter
    • 

    corecore