1,526 research outputs found
Staphylococcus aureus Isolates Carrying Panton-Valentine Leucocidin Genes: Their Frequency, Antimicrobial Patterns, and Association With Infectious Disease in Shahrekord City, Southwest Iran
Background: A diversity of virulence factors work together to create the pathogenicity of Staphylococcus aureus. These factors include cell surface components that promote adherence to surfaces as well as exoproteins such as Panton-Valentine leukocidin (PVL), encoded by the luk-PV genes, that invade or bypass the immune system and are toxic to the host, thereby enhancing the severity of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Objectives: The aim of this study was to determine the frequency of PVL-positive MRSA strains by real-time PCR and their antibiotic susceptibility patterns by phenotypic test. Materials and Methods: In total, 284 Staphylococcus isolates, identified by phenotypic methods from clinical samples of Shahrekord University Hospitals, Shahrekord, Iran, were tested for nuc, mecA, and PVL genes by TaqMan real-time PCR. The antibiotic susceptibility patterns of PVL-containing MRSA strains were determined via the disk diffusion method. Results: In total, 196 isolates (69%) were nuc positive (i.e., S. aureus); of those isolates, 96 (49%) were mecA positive (MRSA). Eighteen (18.8%) of the 96 MRSA positive and 3 (3%) of the 100 methicillin-susceptible Staphylococcus aureus (MSSA) strains were PVL positive. PVL-positive MRSA strains were mostly recovered from tracheal specimens. Eight PVL-positive MRSA strains were resistant to all the tested antibiotics except vancomycin. A significant correlation (P = 0.001) was found between the mecA positivity and the presence of luk-PV genes. Conclusions: Community acquired (CA)-MRSA is becoming a public health concern in many parts of the world, including Asian countries. The variable prevalence of luk-PV-positive MRSA isolates in different regions and their rather high frequency in pneumonia necessitate the application of rapid diagnostic methods such as real-time PCR to improve treatment effectiveness
Elizabethkingia anophelis bacteremia is associated with clinically significant infections and high mortality
published_or_final_versio
Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy
Powerful winds driven by active galactic nuclei (AGN) are often invoked to
play a fundamental role in the evolution of both supermassive black holes
(SMBHs) and their host galaxies, quenching star formation and explaining the
tight SMBH-galaxy relations. Recent observations of large-scale molecular
outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the
evidence to support these studies, as they directly trace the gas out of which
stars form. Theoretical models suggest an origin of these outflows as
energy-conserving flows driven by fast AGN accretion disk winds. Previous
claims of a connection between large-scale molecular outflows and AGN activity
in ULIRGs were incomplete because they were lacking the detection of the
putative inner wind. Conversely, studies of powerful AGN accretion disk winds
to date have focused only on X-ray observations of local Seyferts and a few
higher redshift quasars. Here we show the clear detection of a powerful AGN
accretion disk wind with a mildly relativistic velocity of 0.25c in the X-ray
spectrum of IRAS F11119+3257, a nearby (z = 0.189) optically classified type 1
ULIRG hosting a powerful molecular outflow. The AGN is responsible for ~80% of
the emission, with a quasar-like luminosity of L_AGN = 1.5x10^46 erg/s. The
energetics of these winds are consistent with the energy-conserving mechanism,
which is the basis of the quasar mode feedback in AGN lacking powerful radio
jets.Comment: Revised file including the letter, methods and supplementary
information. Published in the March 26th 2015 issue of Natur
Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model
Food webs, networks of feeding relationships among organisms, provide
fundamental insights into mechanisms that determine ecosystem stability and
persistence. Despite long-standing interest in the compartmental structure of
food webs, past network analyses of food webs have been constrained by a
standard definition of compartments, or modules, that requires many links
within compartments and few links between them. Empirical analyses have been
further limited by low-resolution data for primary producers. In this paper, we
present a Bayesian computational method for identifying group structure in food
webs using a flexible definition of a group that can describe both functional
roles and standard compartments. The Serengeti ecosystem provides an
opportunity to examine structure in a newly compiled food web that includes
species-level resolution among plants, allowing us to address whether groups in
the food web correspond to tightly-connected compartments or functional groups,
and whether network structure reflects spatial or trophic organization, or a
combination of the two. We have compiled the major mammalian and plant
components of the Serengeti food web from published literature, and we infer
its group structure using our method. We find that network structure
corresponds to spatially distinct plant groups coupled at higher trophic levels
by groups of herbivores, which are in turn coupled by carnivore groups. Thus
the group structure of the Serengeti web represents a mixture of trophic guild
structure and spatial patterns, in contrast to the standard compartments
typically identified in ecological networks. From data consisting only of nodes
and links, the group structure that emerges supports recent ideas on spatial
coupling and energy channels in ecosystems that have been proposed as important
for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting
Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow
This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration
Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)
<p>Abstract</p> <p>Background</p> <p>The genus <it>Pyrus </it>belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of <it>Pyrus </it>has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of <it>LEAFY </it>and the alcohol dehydrogenase gene (<it>Adh</it>) were selected to investigate their molecular evolution and phylogenetic utility.</p> <p>Results</p> <p>DNA sequence analyses revealed a complex ortholog and paralog structure of <it>Adh </it>genes in <it>Pyrus </it>and <it>Malus</it>, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some <it>Adh </it>homologs are putatively nonfunctional. A partial region of <it>Adh1 </it>was sequenced for 18 <it>Pyrus </it>species and three subparalogs representing <it>Adh1-1 </it>were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of <it>LEAFY</it>, multiple inparalogs were discovered for both <it>LFY1int2 </it>and <it>LFY2int2</it>. <it>LFY1int2 </it>is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. <it>LFY2int2-N</it>, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of <it>Pyrus </it>using <it>LFY2int2-N</it>.</p> <p>Conclusions</p> <p>Our study represents the first phylogenetic analyses based on LCNGs in <it>Pyrus</it>. Ancient and recent duplications lead to a complex structure of <it>Adh </it>outparalogs and inparalogs in <it>Pyrus </it>and <it>Malus</it>, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, <it>LFY2int2-N </it>is the best nuclear marker for phylogenetic reconstruction of <it>Pyrus </it>due to suitable sequence divergence and the absence of lineage sorting.</p
Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS
The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment
Preparation and characterization of carbon nanofluid by a plasma arc nanoparticles synthesis system
Heat dissipation from electrical appliances is a significant issue with contemporary electrical devices. One factor in the improvement of heat dissipation is the heat transfer performance of the working fluid. In this study, we used plasma arc technology to produce a nanofluid of carbon nanoparticles dispersed in distilled water. In a one-step synthesis, carbon was simultaneously heated and vaporized in the chamber, the carbon vapor and particles were then carried to a collector, where cooling furnished the desired carbon/water nanofluid. The particle size and shape were determined using the light-scattering size analyzer, SEM, and TEM. Crystal morphology was examined by XRD. Finally, the characterization include thermal conductivity, viscosity, density and electric conductivity were evaluated by suitable instruments under different temperatures. The thermal conductivity of carbon/water nanofluid increased by about 25% at 50°C compared to distilled water. The experimental results demonstrated excellent thermal conductivity and feasibility for manufacturing of carbon/water nanofluids
Promoting influenza prevention for elderly people in Hong Kong using health action process approach: Study protocol
Background: People 65 years or older are at greater risk of serious complications from the seasonal influenza compared with young. To promote elderly people's behavioral compliance toward influenza prevention, the aim of the current project is to develop, implement, and evaluate a theory-based low-administration-cost intervention building on a leading psychological theory, the Health Action Process Approach (HAPA). Methods: The target group is Hong Kong Chinese elderly people aged 65 or older who rarely or never adopt any preventive actions. This project will be conducted in three phases over 24 months. In phase 1, intervention program will be developed building on the HAPA theoretical framework which comprises both the initiation and maintenance of influenza prevention behaviors. In phase 2, intervention will be implemented and evaluated using a randomized controlled trial, including: (a) behavior initiation only, (b) behavior initiation + behavior maintenance, and (c) control group. Both the initiation and maintenance components will comprise weekly-delivered telephone-based individual intervention sessions in 3 months. In phase 3, outcome evaluation of behavioral and psychological variables and process evaluation will be conducted. The effectiveness of the intervention will be analyzed using a series of linear mixed models on each behavioral and psychological outcome variable. Structural equation modelling will be used to test the hypothesized theoretical sequence in the HAPA model. Discussion: The proposed project is expected to design theory-based intervention materials to promote the influenza prevention behaviors in Hong Kong elderly people and provide information on its effectiveness and the potential changing mechanism of behavior initiation and maintenance. Trial registration: This randomized controlled trial was funded by the Health and Medical Research Fund (HMRF), Food and Health Bureau of the Government of the Hong Kong Special Administrative Region (Ref: 16151222) and was registered on 13/10/2017 at CCRB Clinical Trials Registry of the Chinese University of Hong Kong, a Partner Registry of a WHO Primary Registry (Ref: CUHK-CCRB00567)
- …