808 research outputs found

    A Factorization Law for Entanglement Decay

    Full text link
    We present a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement upon passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.Comment: 4 pages, 5 figure

    Control of Mycobacterium bovis infection in two sika deer herds in Ireland

    Get PDF
    In a number of countries, tuberculosis (due to infection with Mycobacterium bovis) is a significant health problem of captive deer. This paper describes outbreaks of bovine tuberculosis in sika deer (Cervus nippon) on two farms in Ireland and the methods used to control the disease. On Farm A, infection was first detected during 1993. The infection was eradicated using a programme of test and removal, in association with segregation of young animals. A second outbreak (also due to infection with M. bovis, but a different RFLP profile) was detected in 2002. In the latter outbreak, infection was particularly prevalent in two groups of young deer. M. bovis with the same RFLP profile was also isolated in a badger found dead on the farm. Control was achieved by test and removal in association with herd management changes. In Herd B, infection was first detected in 1995, and subsequently eradicated using test and removal alone. In Herd A, re-infection remains an ongoing risk. Control rather than eradication of infection may more realistic in the short-to medium-term

    BKV Agnoprotein Interacts with α-Soluble N-Ethylmaleimide-Sensitive Fusion Attachment Protein, and Negatively Influences Transport of VSVG-EGFP

    Get PDF
    Background: The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s) of agnoprotein of BK virus remains elusive. Principal Findings: As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them a-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and a-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and a-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with a-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. Conclusions: We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with a-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Guidance on the Use of Complex Systems Models for Economic Evaluations of Public Health Interventions

    Get PDF
    To help health economic modelers respond to demands for greater use of complex systems models in public health. To propose identifiable features of such models and support researchers to plan public health modeling projects using these models. A working group of experts in complex systems modeling and economic evaluation was brought together to develop and jointly write guidance for the use of complex systems models for health economic analysis. The content of workshops was informed by a scoping review. A public health complex systems model for economic evaluation is defined as a quantitative, dynamic, non-linear model that incorporates feedback and interactions among model elements, in order to capture emergent outcomes and estimate health, economic and potentially other consequences to inform public policies. The guidance covers: when complex systems modeling is needed; principles for designing a complex systems model; and how to choose an appropriate modeling technique. This paper provides a definition to identify and characterize complex systems models for economic evaluations and proposes guidance on key aspects of the process for health economics analysis. This document will support the development of complex systems models, with impact on public health systems policy and decision making

    Low Prevalence of Chlamydia trachomatis Infection in Non-Urban Pregnant Women in Vellore, S. India

    Get PDF
    Objective: To determine the prevalence and risk factors for Chlamydia trachomatis (CT) infection in pregnant women and the rate of transmission of CT to infants. Methods: Pregnant women ($28 weeks gestation) in Vellore, South India were approached for enrollment from April 2009 to January 2010. After informed consent was obtained, women completed a socio-demographic, prenatal, and sexual history questionnaire. Endocervical samples collected at delivery were examined for CT by a rapid enzyme test and nucleic acid amplification test (NAAT). Neonatal nasopharyngeal and conjunctival swabs were collected for NAAT testing. Results: Overall, 1198 women were enrolled and 799 (67%) endocervical samples were collected at birth. Analyses were completed on 784 participants with available rapid and NAAT results. The mean age of women was 25.8 years (range 18– 39 yrs) and 22 % (95 % CI: 19.7–24.4%) were primigravida. All women enrolled were married; one reported.one sexual partner; and six reported prior STI. We found 71 positive rapid CT tests and 1/784 (0.1%; 95 % CI: 0–0.38%) true positive CT infection using NAAT. Conclusions: To our knowledge, this is the largest study on CT prevalence amongst healthy pregnant mothers in southern India, and it documents a very low prevalence with NAAT. Many false positive results were noted using the rapid test. Thes

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore