621 research outputs found
Asymptotically hyperbolic manifolds with small mass
For asymptotically hyperbolic manifolds of dimension with scalar
curvature at least equal to the conjectured positive mass theorem
states that the mass is non-negative, and vanishes only if the manifold is
isometric to hyperbolic space. In this paper we study asymptotically hyperbolic
manifolds which are also conformally hyperbolic outside a ball of fixed radius,
and for which the positive mass theorem holds. For such manifolds we show that
the conformal factor tends to one as the mass tends to zero
Charge Form Factor and Cluster Structure of Li Nucleus
The charge form factor of Li nucleus is considered on the basis of its
cluster structure. The charge density of Li is presented as a
superposition of two terms. One of them is a folded density and the second one
is a sum of He and the deuteron densities. Using the available
experimental data for He and deuteron charge form factors, a good
agreement of the calculations within the suggested scheme is obtained with the
experimental data for the charge form factor of Li, including those in
the region of large transferred momenta.Comment: 12 pages 5 figure
A Massive Renormalizable Abelian Gauge Theory in 2+1 Dimensions
The standard formulation of a massive Abelian vector field in
dimensions involves a Maxwell kinetic term plus a Chern-Simons mass term; in
its place we consider a Chern-Simons kinetic term plus a Stuekelberg mass term.
In this latter model, we still have a massive vector field, but now the
interaction with a charged spinor field is renormalizable (as opposed to super
renormalizable). By choosing an appropriate gauge fixing term, the Stuekelberg
auxiliary scalar field decouples from the vector field. The one-loop spinor
self energy is computed using operator regularization, a technique which
respects the three dimensional character of the antisymmetric tensor
. This method is used to evaluate the vector self
energy to two-loop order; it is found to vanish showing that the beta function
is zero to two-loop order. The canonical structure of the model is examined
using the Dirac constraint formalism.Comment: LaTeX, 17 pages, expanded reference list and discussion of
relationship to previous wor
Regularization Independent Analysis of the Origin of Two Loop Contributions to N=1 Super Yang-Mills Beta Function
We present a both ultraviolet and infrared regularization independent
analysis in a symmetry preserving framework for the N=1 Super Yang-Mills beta
function to two loop order. We show explicitly that off-shell infrared
divergences as well as the overall two loop ultraviolet divergence cancel out
whilst the beta function receives contributions of infrared modes.Comment: 7 pages, 2 figures, typos correcte
Fragmentation Function and Hadronic Production of the Heavy Supersymmetric Hadrons
The light top-squark \sto may be the lightest squark and its lifetime may
be `long enough' in a kind of SUSY models which have not been ruled out yet
experimentally, so colorless `supersymmetric hadrons (superhadrons)' (\sto
\bar{q}) ( is a quark except -quark) may be formed as long as the light
top-squark \sto can be produced. Fragmentation function of \sto to heavy
`supersymmetric hadrons (superhadrons)' (\sto \bar{Q}) ( or
) and the hadronic production of the superhadrons are investigated
quantitatively. The fragmentation function is calculated precisely. Due to the
difference in spin of the SUSY component, the asymptotic behavior of the
fragmentation function is different from those of the existent ones. The
fragmentation function is also applied to compute the production of heavy
superhadrons at hadronic colliders Tevatron and LHC under the so-called
fragmentation approach. The resultant cross-section for the heavy superhadrons
is too small to observe at Tevatron, but great enough at LHC, even when all the
relevant parameters in the SUSY models are taken within the favored region for
the heavy superhadrons. The production of `light superhadrons' (\sto \bar{q})
() is also roughly estimated. It is pointed out that the production
cross-sections of the light superhadrons (\sto \bar{q}) may be much greater
than those of the heavy superhadrons, so that even at Tevatron the light
superhadrons may be produced in great quantities.Comment: 20 pages, 9 figure
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
