851 research outputs found

    Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Get PDF
    The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 Όm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts

    Comparison of methods to estimate aerosol effective radiative forcings in climate models

    Get PDF
    Uncertainty in the effective radiative forcing (ERF) of climate primarily arises from the unknown contribution of aerosols, which impact radiative fluxes directly and through modifying cloud properties. Climate model simulations with fixed sea surface temperatures but perturbed atmospheric aerosol loadings allow for an estimate of how strongly the planet's radiative energy budget has been perturbed by the increase in aerosols since pre-industrial times. The approximate partial radiative perturbation (APRP) technique further decomposes the contributions to the direct forcing due to aerosol scattering and absorption and to the indirect forcing due to aerosol-induced changes in cloud scattering, amount, and absorption, as well as the effects of aerosols on surface albedo. Here we evaluate previously published APRP-derived estimates of aerosol effective radiative forcings from these simulations conducted in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and find that they are biased as a result of two large coding errors that – in most cases – fortuitously compensate. The most notable exception is the direct radiative forcing from absorbing aerosols, which is more than 40 % larger averaged across CMIP6 models in the present study. Correcting these biases eliminates the residuals and leads to better agreement with benchmark estimates derived from double calls to the radiation code. The APRP method – when properly implemented – remains a highly accurate and efficient technique for diagnosing aerosol ERF in cases where double radiation calls are not available, and in all cases it provides quantification of the individual contributors to the ERF that are highly useful but not otherwise available

    Tumor necrosis factor superfamily 15 promotes lymphatic metastasis via upregulation of vascular endothelial growth factor-C in a mouse model of lung cancer

    Get PDF
    Lymphatic metastasis is facilitated by lymphangiogenic growth factor vascular endothelial growth factor-C (VEGFC) that is secreted by some primary tumors. We previously identified tumor necrosis factor superfamily 15 (TNFSF15), a blood vascular endothelium-derived cytokine, in lymphatic endothelial cells, as a key molecular modulator during lymphangiogenesis. However, the effect of TNFSF15 on tumor lymphatic metastasis and the underlying molecular mechanisms remain unclear. We report here that TNFSF15, which is known to inhibit primary tumor growth by suppressing angiogenesis, can promote lymphatic metastasis through facilitating lymphangiogenesis in tumors. Mice bearing tumors induced by A549 cells stably overexpressing TNFSF15 exhibited a significant increase in densities of lymphatic vessels and a marked enhancement of A549 tumor cells in newly formed lymphatic vessels in the primary tumors as well as in lymph nodes. Treatment of A549 cells with TNFSF15 results in upregulation of VEGFC expression, which can be inhibited by siRNA gene silencing of death domain-containing receptor-3 (DR3), a cell surface receptor for TNFSF15. In addition, TNFSF15/DR3 signaling pathways in A549 cells include activation of NF-ÎșB during tumor lymphangiogenesis. Our data indicate that TNFSF15, a cytokine mainly produced by blood endothelial cells, facilitates tumor lymphangiogenesis by upregulating VEGFC expression in A549 cells, contributing to lymphatic metastasis in tumor-bearing mice. This finding also suggests that TNFSF15 may have potential as an indicator for prognosis evaluation.Tingting Qin, Dingzhi Huang, Zhujun Liu, Xiaoling Zhang, Yanan Jia, Cory J. Xian, Kai L

    Glueballs, gluon condensate, and pure glue QCD below T_c

    Full text link
    A quasiparticle description of pure glue QCD thermodynamics at T<T_c is proposed and compared to recent lattice data. Given that a gas of glueballs with constant mass cannot quantitatively reproduce the early stages of the deconfinement phase transition, the problem is to identify a relevant mechanism leading to the observed sudden increase of the pressure, trace anomaly, etc. It is shown that the strong decrease of the gluon condensate near T_c combined with the increasing thermal width of the lightest glueballs might be the trigger of the phase transition.Comment: 5 pages, 5 figures; analysis refined in v2, explanations added; v3 to appear in EPJ

    Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites

    Get PDF
    Titanium dioxide (TiO2) in different forms such as films, fibers or particles are being extensively studied for removal of contaminants from aquatic environments due to its outstanding photocatalytic activity. This work reports the development of TiO2-polyamide 12 electrospun fiber mats. A systematic study on the influence of electrospun processing parameters on polymer fiber morphology was performed. It was observed that the average fiber diameter is mainly influenced by polymer concentration and average fiber diameters between 404 ± 82 nm and 1442 ± 360 nm were obtained. Polyamide-12 (PA-12) was used as a polymer matrix and electrospun with 0, 10 and 20 wt% of TiO2. It was observed that the filler does not change the average fiber diameter, being similar to that observed for neat PA-12 fibers processed under the same experimental conditions. The TiO2 were particles dispensed not only in the bulk of the polymeric matrix but also on the surface of the fibers, especially for the samples with higher filler contents. Neat and nanocomposite electrospun samples show a hydrophobic behavior and a degree of crystallinity of ~25%. The photocatalytic performance of the processed samples was measured by following the degradation capability of a chosen dye, methylene blue (MB). Results show that the nanocomposite samples have a remarkable photocatalytic activity, especially the one with a higher load of TiO2 particles (20 wt%), with all MB being removed from the solution after 100 min.This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/ UI607/2014, and CNPq (Conselho Nacional de Desenvolvimento CientĂ­fico e Tecnol ogico e Brazil). The authors also thank funding from “Matepro eOptimizing Materials and Processes”, ref. NORTE- 07-0124-FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 e O Novo Norte), under the “Quadro de Refer^encia Estrat egico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). PM thanks the FCT for the, SFRH/BD/98616/2013 grant. VS and SLM also thank support from the COST Action MP1206 “Electrospun Nano-fibers for bio inspired composite materials and innovative industrial applications”. VS thanks the EIS Faculty at UOW for the starting grant

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    \psi(2S) Decays into \J plus Two Photons

    Full text link
    Using \gamma \gamma J/\psi, J/\psi \ra e^+ e^- and ÎŒ+Ό−\mu^+ \mu^- events from a sample of 14.0×10614.0\times 10^6 \psip decays collected with the BESII detector, the branching fractions for \psip\ra \pi^0\J, \eta\J, and \psi(2S)\ar\gamma\chi_{c1},\gamma\chi_{c2}\ar\gamma\gamma\jpsi are measured to be B(\psip\ra \pi^0\J) = (1.43\pm0.14\pm0.13)\times 10^{-3}, B(\psip\ra \eta\J) = (2.98\pm0.09\pm0.23)%, B(\psi(2S)\ar\gamma\chi_{c1}\ar\gamma\gamma\jpsi) = (2.81\pm0.05\pm 0.23)%, and B(\psi(2S)\ar\gamma\chi_{c2}\ar\gamma\gamma\jpsi) = (1.62\pm0.04\pm 0.12)%.Comment: 7 pages, 6 figures. submitted to Phys. Rev.

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore