364 research outputs found

    Localization and traces in open-closed topological Landau-Ginzburg models

    Full text link
    We reconsider the issue of localization in open-closed B-twisted Landau-Ginzburg models with arbitrary Calabi-Yau target. Through careful analsysis of zero-mode reduction, we show that the closed model allows for a one-parameter family of localization pictures, which generalize the standard residue representation. The parameter λ\lambda which indexes these pictures measures the area of worldsheets with S2S^2 topology, with the residue representation obtained in the limit of small area. In the boundary sector, we find a double family of such pictures, depending on parameters λ\lambda and μ\mu which measure the area and boundary length of worldsheets with disk topology. We show that setting μ=0\mu=0 and varying λ\lambda interpolates between the localization picture of the B-model with a noncompact target space and a certain residue representation proposed recently. This gives a complete derivation of the boundary residue formula, starting from the explicit construction of the boundary coupling. We also show that the various localization pictures are related by a semigroup of homotopy equivalences.Comment: 36 page

    On the boundary coupling of topological Landau-Ginzburg models

    Full text link
    I propose a general form for the boundary coupling of B-type topological Landau-Ginzburg models. In particular, I show that the relevant background in the open string sector is a (generally non-Abelian) superconnection of type (0,1) living in a complex superbundle defined on the target space, which I allow to be a non-compact Calabi-Yau manifold. This extends and clarifies previous proposals. Generalizing an argument due to Witten, I show that BRST invariance of the partition function on the worldsheet amounts to the condition that the (0,<= 2) part of the superconnection's curvature equals a constant endomorphism plus the Landau-Ginzburg potential times the identity section of the underlying superbundle. This provides the target space equations of motion for the open topological model.Comment: 21 page

    Collapsing D-branes in one-parameter models and small/large radius duality

    Full text link
    We finalize the study of collapsing D-branes in one-parameter models by completing the analysis of the associated hypergeometric hierarchy. This brings further evidence that the phenomenon of collapsing 6-branes at the mirror of the `conifold' point in IIA compactifications on one-parameter Calabi-Yau manifolds is generic. It also completes the reduction of the study of higher periods in one-parameter models to a few families which display characteristic behaviour. One of the models we consider displays an exotic form of small-large radius duality, which is a consequence of an ``accidental'' discrete symmetry of its moduli space. We discuss the implementation of this symmetry at the level of the associated type II string compactification and its action on D-brane states. We also argue that this model admits two special Lagrangian fibrations and that the symmetry can be understood as their exchange.Comment: 34 pages, 12 figure

    Collapsing D-Branes in Calabi-Yau Moduli Space: I

    Get PDF
    We study the quantum volume of D-branes wrapped around various cycles in Calabi-Yau manifolds, as the manifold's moduli are varied. In particular, we focus on the behaviour of these D-branes near phase transitions between distinct low energy physical descriptions of the resulting string theory. Whereas previous studies have solely considered quantum volumes in the context of two-cycles in perturbative string theory or D-branes in the specific example of the quintic hypersurface, we work more generally and find qualitatively new features. On the mathematical side, as we briefly note, our work has some interesting implications for certain issues in arithmetics.Comment: 77 pages, 15 figure

    Thomson and Compton scattering with an intense laser pulse

    Full text link
    Our paper concerns the scattering of intense laser radiation on free electrons and it is focused on the relation between nonlinear Compton and nonlinear Thomson scattering. The analysis is performed for a laser field modeled by an ideal pulse with a finite duration, a fixed direction of propagation and indefinitely extended in the plane perpendicular to it. We derive the classical limit of the quantum spectral and angular distribution of the emitted radiation, for an arbitrary polarization of the laser pulse. We also rederive our result directly, in the framework of classical electrodynamics, obtaining, at the same time, the distribution for the emitted radiation with a well defined polarization. The results reduce to those established by Krafft et al. [Phys. Rev. E 72, 056502 (2005)] in the particular case of linear polarization of the pulse, orthogonal to the initial electron momentum. Conditions in which the differences between classical and quantum results are visible are discussed and illustrated by graphs

    Cardy condition for open-closed field algebras

    Get PDF
    Let VV be a vertex operator algebra satisfying certain reductivity and finiteness conditions such that CV\mathcal{C}_V, the category of V-modules, is a modular tensor category. We study open-closed field algebras over V equipped with nondegenerate invariant bilinear forms for both open and closed sectors. We show that they give algebras over certain \C-extension of the Swiss-cheese partial dioperad, and we obtain Ishibashi states easily in such algebras. We formulate Cardy condition algebraically in terms of the action of the modular transformation S:τ1τS: \tau \mapsto -\frac{1}{\tau} on the space of intertwining operators. We then derive a graphical representation of S in the modular tensor category CV\mathcal{C}_V. This result enables us to give a categorical formulation of Cardy condition and modular invariant conformal full field algebra over VVV\otimes V. Then we incorporate the modular invariance condition for genus-one closed theory, Cardy condition and the axioms for open-closed field algebra over V equipped with nondegenerate invariant bilinear forms into a tensor-categorical notion called Cardy CVCVV\mathcal{C}_V|\mathcal{C}_{V\otimes V}-algebra. We also give a categorical construction of Cardy CVCVV\mathcal{C}_V|\mathcal{C}_{V\otimes V}-algebra in Cardy case.Comment: 70 page, 105 figures, references are updated. less typos, to appear in Comm. Math. Phy

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
    corecore