124 research outputs found

    CP Violation in Fermion Pair Decays of Neutral Boson Particles

    Full text link
    We study CP violation in fermion pair decays of neutral boson particles with spin 0 or 1. We study a new asymmetry to measure CP violation in η,KL→Ό+Ό−\eta, K_L \rightarrow \mu^+\mu^- decays and discuss the possibility of measuring it experimentally. For the spin-1 particles case, we study CP violation in the decays of J/ψJ/\psi to SU(3)SU(3) octet baryon pairs. We show that these decays can be used to put stringent constraints on the electric dipole moments of Λ\Lambda, ÎŁ\Sigma and Ξ\Xi.Comment: 14p, OZ-93/22, UM-93/89, OITS 51

    Thermodynamics of cosmological horizons in f(T)f(T) gravity

    Full text link
    We explore thermodynamics of the apparent horizon in f(T)f(T) gravity with both equilibrium and non-equilibrium descriptions. We find the same dual equilibrium/non-equilibrium formulation for f(T)f(T) as for f(R)f(R) gravity. In particular, we show that the second law of thermodynamics can be satisfied for the universe with the same temperature of the outside and inside the apparent horizon.Comment: 18 pages, no figure, version accepted for publication in JCA

    Observational Constraints on Teleparallel Dark Energy

    Full text link
    We use data from Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB) observations to constrain the recently proposed teleparallel dark energy scenario based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. Using the power-law, the exponential and the inverse hyperbolic cosine potential ansatzes, we show that the scenario is compatible with observations. In particular, the data favor a nonminimal coupling, and although the scalar field is canonical the model can describe both the quintessence and phantom regimes.Comment: 19 pages, 6 figures, version accepted by JCA

    Large-scale magnetic fields from inflation due to a CPTCPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields

    Full text link
    We investigate the generation of large-scale magnetic fields due to the breaking of the conformal invariance in the electromagnetic field through the CPTCPT-even dimension-six Chern-Simons-like effective interaction with a fermion current by taking account of the dynamical Kalb-Ramond and scalar fields in inflationary cosmology. It is explicitly demonstrated that the magnetic fields on 1Mpc scale with the field strength of ∌10−9\sim 10^{-9}G at the present time can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys. J.

    Phase-Space analysis of Teleparallel Dark Energy

    Full text link
    We perform a detailed dynamical analysis of the teleparallel dark energy scenario, which is based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. We find that the universe can result in the quintessence-like, dark-energy-dominated solution, or to the stiff dark-energy late-time attractor, similarly to standard quintessence. However, teleparallel dark energy possesses an additional late-time solution, in which dark energy behaves like a cosmological constant, independently of the specific values of the model parameters. Finally, during the evolution the dark energy equation-of-state parameter can be either above or below -1, offering a good description for its observed dynamical behavior and its stabilization close to the cosmological-constant value.Comment: 23 pages, 4 figures, 5 tables, version published at JCA

    Isometric Sliced Inverse Regression for Nonlinear Manifolds Learning

    Get PDF
    [[abstract]]Sliced inverse regression (SIR) was developed to find effective linear dimension-reduction directions for exploring the intrinsic structure of the high-dimensional data. In this study, we present isometric SIR for nonlinear dimension reduction, which is a hybrid of the SIR method using the geodesic distance approximation. First, the proposed method computes the isometric distance between data points; the resulting distance matrix is then sliced according to K-means clustering results, and the classical SIR algorithm is applied. We show that the isometric SIR (ISOSIR) can reveal the geometric structure of a nonlinear manifold dataset (e.g., the Swiss roll). We report and discuss this novel method in comparison to several existing dimension-reduction techniques for data visualization and classification problems. The results show that ISOSIR is a promising nonlinear feature extractor for classification applications.[[incitationindex]]SCI[[booktype]]çŽ™æœŹ[[booktype]]電歐

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction
    • 

    corecore