1,797 research outputs found

    The Hubble Deep Field South Flanking Fields

    Full text link
    As part of the Hubble Deep Field South program, a set of shorter 2-orbit observations were obtained of the area adjacent to the deep fields. The WFPC2 flanking fields cover a contiguous solid angle of 48 square arcminutes. Parallel observations with the STIS and NICMOS instruments produce a patchwork of additional fields with optical and near-infrared (1.6 micron) response. Deeper parallel exposures with WFPC2 and NICMOS were obtained when STIS observed the NICMOS deep field. These deeper fields are offset from the rest, and an extended low surface brightness object is visible in the deeper WFPC2 flanking field. In this data paper, which serves as an archival record of the project, we discuss the observations and data reduction, and present SExtractor source catalogs and number counts derived from the data. Number counts are broadly consistent with previous surveys from both ground and space. Among other things, these flanking field observations are useful for defining slit masks for spectroscopic follow-up over a wider area around the deep fields, for studying large-scale structure that extends beyond the deep fields, for future supernova searches, and for number counts and morphological studies, but their ultimate utility will be defined by the astronomical community.Comment: 46 pages, 15 figures. Images and full catalogs available via the HDF-S at http://www.stsci.edu/ftp/science/hdfsouth/hdfs.html at present. The paper is accepted for the February 2003 Astronomical Journal. Full versions of the catalogs will also be available on-line from AJ after publicatio

    Resistance to Mucosal Lysozyme Compensates for the Fitness Deficit of Peptidoglycan Modifications by Streptococcus pneumoniae

    Get PDF
    The abundance of lysozyme on mucosal surfaces suggests that successful colonizers must be able to evade its antimicrobial effects. Lysozyme has a muramidase activity that hydrolyzes bacterial peptidoglycan and a non-muramidase activity attributable to its function as a cationic antimicrobial peptide. Two enzymes (PgdA, a N-acetylglucosamine deacetylase, and Adr, an O-acetyl transferase) that modify different sites on the peptidoglycan of Streptococcus pneumoniae have been implicated in its resistance to lysozyme in vitro. Here we show that the antimicrobial effect of human lysozyme is due to its muramidase activity and that both peptidoglycan modifications are required for full resistance by pneumococci. To examine the contribution of lysozyme and peptidoglycan modifications during colonization of the upper respiratory tract, competition experiments were performed with wild-type and pgdAadr mutant pneumococci in lysozyme M-sufficient (LysM+/+) and -deficient (LysM−/−) mice. The wild-type strain out-competed the double mutant in LysM+/+, but not LysM−/− mice, indicating the importance of resistance to the muramidase activity of lysozyme during mucosal colonization. In contrast, strains containing single mutations in either pgdA or adr prevailed over the wild-type strain in both LysM+/+ and LysM−/− mice. Our findings demonstrate that individual peptidoglycan modifications diminish fitness during colonization. The competitive advantage of wild-type pneumococci in LysM+/+ but not LysM−/− mice suggests that the combination of peptidoglycan modifications reduces overall fitness, but that this is outweighed by the benefits of resistance to the peptidoglycan degrading activity of lysozyme

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia

    Get PDF
    Dinosauromorphs evolved a wide diversity of hind limb skeletal morphologies, suggesting highly divergent articular soft tissue anatomies. However, poor preservation of articular soft tissues in fossils has hampered any follow-on functional inferences. We reconstruct the hip joint soft tissue anatomy of non-dinosaurian dinosauromorphs and early dinosaurs using osteological correlates derived from extant sauropsids and infer trends in character transitions along the theropod and sauropodomorph lineagues. Femora and pelves of 107 dinosauromorphs and outgroup taxa were digitized using 3D imaging techniques. Key transitions were estimated using maximum likelihood ancestral state reconstruction. The hips of dinosauromorphs possessed wide a disparity of soft tissue morphologies beyond the types and combinations exhibited by extant archosaurs. Early evolution of the dinosauriform hip joint was characterized by the retention of a prominent femoral hyaline cartilage cone in post-neonatal individuals, with the cartilage cone independently reduced within theropods and sauropodomorphs. The femur of Dinosauriformes possessed a fibrocartilage sleeve on the metaphysis, which surrounded a hyaline core. The acetabulum of Dinosauriformes possessed distinct labrum and antitrochanter structures. In sauropodomorphs, hip congruence was maintained by thick hyaline cartilage on the femoral head, whereas theropods relied on acetabular tissues such as ligaments and articular pads. In particular, the craniolaterally ossified hip capsule of non- Avetheropoda neotheropods permitted mostly parasagittal femoral movements. These data indicate that the dinosauromorph hip underwent mosaic evolution within the saurischian lineage and that sauropodomorphs and theropods underwent both convergence and divergence in articular soft tissues, correlated with transitions in body size, locomotor posture, and joint loading

    Gray matter imaging in multiple sclerosis: what have we learned?

    Get PDF
    At the early onset of the 20th century, several studies already reported that the gray matter was implicated in the histopathology of multiple sclerosis (MS). However, as white matter pathology long received predominant attention in this disease, and histological staining techniques for detecting myelin in the gray matter were suboptimal, it was not until the beginning of the 21st century that the true extent and importance of gray matter pathology in MS was finally recognized. Gray matter damage was shown to be frequent and extensive, and more pronounced in the progressive disease phases. Several studies subsequently demonstrated that the histopathology of gray matter lesions differs from that of white matter lesions. Unfortunately, imaging of pathology in gray matter structures proved to be difficult, especially when using conventional magnetic resonance imaging (MRI) techniques. However, with the recent introduction of several more advanced MRI techniques, the detection of cortical and subcortical damage in MS has considerably improved. This has important consequences for studying the clinical correlates of gray matter damage. In this review, we provide an overview of what has been learned about imaging of gray matter damage in MS, and offer a brief perspective with regards to future developments in this field

    Clinical correlates of grey matter pathology in multiple sclerosis

    Get PDF
    Traditionally, multiple sclerosis has been viewed as a disease predominantly affecting white matter. However, this view has lately been subject to numerous changes, as new evidence of anatomical and histological changes as well as of molecular targets within the grey matter has arisen. This advance was driven mainly by novel imaging techniques, however, these have not yet been implemented in routine clinical practice. The changes in the grey matter are related to physical and cognitive disability seen in individuals with multiple sclerosis. Furthermore, damage to several grey matter structures can be associated with impairment of specific functions. Therefore, we conclude that grey matter damage - global and regional - has the potential to become a marker of disease activity, complementary to the currently used magnetic resonance markers (global brain atrophy and T2 hyperintense lesions). Furthermore, it may improve the prediction of the future disease course and response to therapy in individual patients and may also become a reliable additional surrogate marker of treatment effect

    Measurement of associated Z plus charm production in proton-proton collisions at root s=8TeV

    Get PDF
    A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with pT(l) > 20 GeV, vertical bar eta(l)vertical bar 25 GeV and vertical bar eta(jet)vertical bar Z + c + X) B(Z -> l(+)l(-)) = 8.8 +/- 0.5 (stat)+/- 0.6 (syst) pb. The ratio of the Z+c and Z+b production cross sections is measured to be sigma(pp -> Z+c+X)/sigma (pp -> Z+b+X) = 2.0 +/- 0.2 (stat)+/- 0.2 (syst). The Z+c production cross section and the cross section ratio are also measured as a function of the transverse momentum of theZ boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.Peer reviewe

    Measurement of differential cross sections in the kinematic angular variable phi* for inclusive Z boson production in pp collisions at root s=8 TeV

    Get PDF
    Measurements of differential cross sections d sigma/d phi* and double-differential cross sections d(2)sigma/ld phi*d/y/ for inclusive Z boson production are presented using the dielectron and dimuon final states. The kinematic observable phi* correlates with the dilepton transverse momentum but has better resolution, and y is the dilepton rapidity. The analysis is based on data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb(-1). The normalised cross section (1/sigma) d sigma/d phi*, within the fiducial kinematic region, is measured with a precision of better than 0.5% for phi* <1. The measurements are compared to theoretical predictions and they agree, typically, within few percent.Peer reviewe
    corecore