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ABSTRACT 

Dinosauromorphs evolved a wide diversity of femoral and pelvic morphologies, 

suggesting highly divergent articular soft tissue anatomies among major clades. However, poor 

preservation of joint soft tissues in fossil taxa has thus far hampered functional inferences. We 

reconstruct the soft tissue anatomy of basal dinosauromorph hip joints using osteological 

correlates derived from extant sauropsids and infer trends in femoral and acetabular character 

transitions leading to theropods and sauropodomorphs. Femora and pelves of 107 

dinosauromorphs and outgroup taxa were digitized using 3D imaging techniques. Key transitions 

were estimated using maximum likelihood ancestral state reconstruction. We found that the hip 

joints of extinct dinosauromorphs possess soft tissue morphologies beyond the spectrum of 

variation exhibited by extant archosaurs. Early evolution of the Dinosauriformes hip joint is 

characterized by the retention of a prominent femoral hyaline cartilage cone in post-neonatal 

individuals, but the cartilage cone is independently reduced within the theropod and 

sauropodomorph lineages. The femur of Dinosauriformes possessed a fibrocartilage sleeve on 

the femoral metaphysis, which surrounded a hyaline cartilage core. The acetabulum of basal 

Dinosauriformes possesses distinct labrum and antitrochanter structures on the supraacetabulum. 

Sauropodomorphs evolved thick hyaline cartilage on the femoral head for maintaining hip 

congruence, whereas theropods relied on acetabular soft tissues such as ligaments and articular 

pads. In particular, the rostrolaterally ossified hip capsule of basal theropods permitted mostly 

parasagittal femoral movements. These data indicate that the dinosauromorph hip joint 

underwent mosaic evolution within the saurischian stem-lineage, and that sauropodomorphs and 

sauropods underwent both convergence and divergence in articular soft tissues, reflective of 

transitions in body size, locomotor posture, and joint loading. 



INTRODUCTION 

 The evolution of Dinosauromorpha is characterized by a suite of anatomical features in 

the appendicular limbs, culminating in the drastically divergent locomotor behaviors of birds, 

sauropods, and multiple clades of ornithischians (Allen et al., 2009; Hutchinson and Allen, 2009; 

Sander et al., 2011; Maidment and Barrett, 2012). Numerous musculoskeletal transitions in the 

hind limbs of extinct dinosauromorphs distinguish their morphologies from those of 

crocodylians, the only extant clade of archosaurs aside from birds (Huxley, 1870; Romer, 1923; 

Galton, 1969; Parrish, 1986, 1987; Gatesy and Middleton, 1997; Wilson and Carrano, 1999; 

Hutchinson, 2001a, b; Benson and Choiniere, 2013; Maidment and Barrett, 2014). Numerous 

studies explored the functional significance of musculoskeletal hind limb characters during the 

evolution of dinosauromorph locomotion, including cursorial bipedality (non-dinosaurian 

dinosauromorphs, Nesbitt et al., 2009; herrerasaurids, Grillo and Azevedo, 2011; basal 

ornithischian, Bates et al., 2012a), cursorial quadrupedality (silesaurids, Nesbitt et al., 2010; 

Maidment and Barrett, 2012), graviportal bipedality (large theropods, Hutchinson et al., 2005; 

Bates et al., 2012b; basal sauropodomorphs, Mallison, 2010b, c), graviportal quadrupedality 

(sauropods, Wilson and Carrano, 1999; Yates and Kitching, 2003; Carrano, 2005; ornithischians, 

Mallison 2010a), knee-driven bipedality (avialans, Gatesy and Middleton, 1997; Carrano, 1998), 

and flight (theropods, Gatesy and Dial, 1996; Clarke et al., 2006; Heers and Dial, 2015; 

Chatterjee and Templin, 2007). Moreover, the rich evolutionary history of dinosaurs features 

multiple, independent transitions in body size, including gigantism (Dinosauria, Benson et al., 

2014; sauropods, Sander et al., 2011; theropods, Christiansen and Fariña, 2004; Lee et al., 

2014a) and miniaturization (ornithischians, Butler et al., 2010; sauropods, Stein et al., 2010; non-

avian theropods, Turner et al., 2007; avialans, Hainsworth and Wolf, 1972). Throughout these 



transitions, the hip joint served as an important load-bearing articulation in bipeds and 

quadrupeds of all body sizes. Therefore, new anatomical data on hip joint soft tissues should 

elucidate patterns in hind limb functional morphology and evolution of the dinosaurian lineage. 

However, our understanding of archosaurian, and for that matter, most reptile hip joint 

anatomy remains hindered by the lack of articular soft tissues in the fossil record (Holliday et al., 

2010; Bonnan et al, 2010, 2013; Tsai and Holliday, 2015). Joint soft tissues such as epiphyseal 

cartilages, fibrocartilaginous pads, and joint ligaments provide constraints to the mobility (Carter 

and Wong, 2003; Hall, 2005), load-bearing ability (Carter et al, 1998; Carter and Beaupre, 2007) 

and growth (Haines, 1942) of limb elements. Archosaurs retain the basal tetrapod joint 

morphology, wherein a single layer of epiphyseal cartilage maintains joint articulation at its 

superficial surface and facilitates longitudinal bone growth at its metaphyseal growth plate 

surface (Haines 1938, 1941). With the exception of Neoaves, extant archosaurs retain thick 

layers of articular soft tissues in the hip, even at skeletal maturity (Cracraft, 1971; Firbas and 

Zweymüller, 1971; Fujiwara et al., 2010; Tsai and Holliday, 2015). Thick layers of epiphyseal 

cartilage have also been inferred for extinct dinosaurs, in particular saurischians (sauropods, 

Cope, 1878; Marsh, 1896; Hay, 1908; theropods, Hutchinson et al., 2005; Gatesy et al., 2009; 

Holliday et al., 2010). These observations suggest that articular soft tissues played crucial 

mechanical and physiological roles in the evolution of dinosaurian hind limbs and likely 

influenced the bony morphologies seen in clades as morphologically disparate as sauropods and 

birds.  

Thus far, there has been little concerted effort to investigate the evolution of archosaur 

hip joints (but see Kuznetsov and Sennikov, 2000; Tsai and Holliday, 2015). Among hip joint 

soft tissues, joint ligaments and articular pads have never been reported in fossil archosaurs, 



whereas calcified cartilage (Norman, 1980; Nicholls and Russell, 1985; Wilson and Sereno, 

1998; Mallison, 2010b) and desiccated epiphyseal cartilage (Schwarz et al., 2007) are 

occasionally found on the ends of fossil long bones. However, when preserved in fossils the 

cartilage conforms to the shape of the subchondral bone and thus offers little information on 

articular surface morphology in-vivo. Moreover, although the anatomy of extant archosaur hip 

joints have received some attention in the comparative literature (Stolpe, 1932; Haines, 1938; 

1942; Kuznetsov and Sennikov, 2000), homologies of hip joint soft tissues, as well as the 

anatomical relationship of soft tissues and their osteological correlates, remain unresolved. These 

uncertainties have led to substantial disagreements in osteological character description and soft 

tissue reconstructions of fossil saurischian hip joints (Kurzanov, 1981; Osmólska, 1972; Rowe, 

1989; Brochu, 2003; Butler et al., 2011). 

Here, we investigate the sequence of evolutionary transitions in the hip joint from basal 

dinosauromorphs along the sauropod and theropod lineages. We infer the presence and topology 

of joint soft tissues using phylogenetically informed osteological correlates (Tsai and Holliday, 

2015), identify the polarity and sequence of discrete character transitions using maximum 

likelihood ancestral state reconstruction (Schluter et al., 1997; Pagel, 1999), and test the 

homology of osteological characters based on reconstructed soft tissues. This study establishes 

the basic comparative framework of hip joint anatomical structures, such as cartilage caps, 

ligaments, and articular pads, within the dinosaurian lineage, and forms the basis for subsequent 

work on archosaur locomotor mechanics and joint biology. 

MATERIALS AND METHODS 

Osteological correlates and anatomical reference axes 



 Anatomical abbreviations used in this study are summarized in Table 1 and illustrated in 

Fig. 1. In order to characterize the shift of cartilaginous and ligamentous attachments within the 

dinosauromorph lineage, nomenclature for osteological correlates follows the prescribed 

homology in Tsai and Holliday (2015). We used cartilage correction factors (CCFs) described by 

Holliday et al. (2010) for Alligator, juvenile Struthio, and adult Struthio to scale the thickness of 

dinosauromorph femoral epiphyseal cartilage, and based the inference on similarity in growth 

plate morphology. Additionally, although crocodylians and birds form the Extant Phylogenetic 

Bracket (EPB; Witmer, 1995) for Dinosauromorpha, the inclusion of non-archosaurian 

archosauromorphs in this analysis requires a broader range of phylogenetic comparison beyond 

extant archosaurs. The identification of topologically and histologically similar tissues in 

outgroup diapsids, such as lepidosaurs, further supports the inference of tissue homology within 

Archosauromorpha (Tsai and Holliday, 2015). 

We used reference axes (Fig. 1c; modified from Tsai and Holliday, 2015) to account for 

evolutionary shifts in femoral condylar orientation among dinosauromorphs, theropods 

(Hutchinson, 2001b), and sauropodomorphs (Martínez and Alcober, 2009; Yates et al., 2010). 

The mediolateral plane (red) passes through the distal condyles and intersects the femoral long 

axis. The craniocaudal plane (blue) is perpendicular to the mediolateral plane and intersects the 

latter at the femoral long axis. The anatomical capital-trochanteric plane (green) passes through 

the femoral head and the greater trochanter. In all archosauromorphs examined in this study, the 

acetabulum faces laterally. Therefore, the craniocaudal and dorsoventral axes of the whole 

animal, as well as the mediolateral axis through both acetabulae, describe the orientation of 

acetabular soft tissue structures.Throughout this study the proximal attachments of ligaments are 

denoted as the origins, whereas the distal attachments are denoted as the insertions. 



Data collection  

We studied a broad phylogenetic range of archosauromorph taxa (N = 107 taxa; Table 

1S), including 101 dinosauromorphs, and scored discrete osteological characters on the proximal 

femur and acetabulum. Outgroup archosauromorph comparisons potentially allow robust 

inferences of soft tissue transitions leading to each terminal taxon in Dinosauromorpha. Fossil 

specimens were studied by observation and digital photography (Sony DSC-F828). Many 

specimens (N = 83 taxa) were reconstructed as surface models using 3D imaging techniques 

including photogrammetry, computed tomography (CT), and laser scans. Photogrammetric 

models were generated using the freely available, open source package Bundler 

(http://www.cs.cornell.edu/~snavely/bundler/) and PMVS (Patch-based Multi-view Stereo 

Software, http://www.di.ens.fr/pmvs/) using techniques modified from Falkingham (2012) and 

Mallison and Wings (2014). Taxa included in the character analysis were selected based on 

quality of preservation and completeness of hip joint elements in the referred individuals. In 

order to maintain the broad phylogenetic scope of the current study, we sampled only taxa 

represented by adult or large subadult individuals and excluded young juvenile and neonates 

from the comparative analysis. The inclusion of subadults in this analysis is merited because 

many archosaurs, including most nonavian dinosaurs, attain reproductive maturity well ahead of 

skeletal maturity defined as effective cessation of somatic growth (Erickson, 2005; Erickson et 

al., 2007; Lee and Werning, 2008). Because terminal skeletal maturity is seldom preserved in the 

archosaurian fossil record, many extinct archosaur taxa were defined based on character states 

exhibited by locomotor competent and reproductively mature individuals that were nevertheless 

undergoing active bone growth prior to death (Hone et al., 2016). For taxa represented by 

multiple individuals (e.g., Coelophysis), we scored only consistent osteological character states 



on individuals inferred as adults or subadults. For taxa represented only by a single holotype 

individual (e.g., Carnotaurus) the individual is assumed to be an adult or subadult, unless it was 

a young juvenile or neonate individual in its description. Nevertheless, young juvenile and 

neonate individuals were scored to assess ontogenetic transitions in hip joint character states. 

Institutional abbreviations are summarized in Table 2S. 

Ancestral state reconstruction of hip joint soft tissues 

 We identified 14 characters based on osteological correlates of putatively homologous 

hip joint cartilages, ligaments, and articular pads in extant diapsids (Table 2; Tsai and Holliday, 

2015). These osteological characters serve as proxies for the presence, orientation, thickness, and 

shapes of articular soft tissues.  

We used maximum likelihood ancestral state reconstruction to optimize the polarity of 

character state transitions in the osteological correlates (Schluter et al., 1997; Pagel, 1999). 

Composite phylogenetic trees were constructed using Mesquite (V2.73; Maddison and 

Maddison, 2015) based on published studies, with branch lengths based on estimated divergence 

date between sister clades and sister taxa (See Fig. 1S for references). We constructed a 

consensus phylogenetic tree (Fig. 2a), in which Silesauridae is considered as a non-dinosaurian 

Dinosauriformes (Brusatte et al., 2010b; Nesbitt, 2011), Herrerasauridae as a basal theropod 

(Sues et al., 2011), Eoraptor as the basal-most sauropodomorph (Martínez and Alcober, 2009), 

and Archaeopteryx as the basal-most avialan (Turner et al., 2012). Additionally, we analyzed 

four additional tree topologies based on modifications of the consensus tree to account for 

contentious phylogenetic placement of Silesauridae as stem-ornithischians (Fig. 2b; Langer and 

Ferigolo, 2013), Herrerasauridae as the basal-most saurischian lineage (Fig. 2c; Novas et al., 



2010), Eoraptor as a basal theropod (Fig. 2d; Sues et al., 2011) and Archaeopteryx as a stem-

deinonychosaur (Fig. 2e; Xu et al., 2011; Godefroit et al., 2013).  

Discrete characters were analyzed using the Trace Character History function of 

Mesquite using the maximum likelihood reconstruction method (Schluter et al., 1997; Pagel, 

1999). Relative likelihood of character states at each node was estimated on the composite 

phylogeny of Saurischia using a marginal probability reconstruction of Markov k-state 1 

parameter model (Mk1; Lewis, 2001). This method prescribes equal likelihood for the directions 

of character state transition (i.e., a character gain from 0 to 1 is as likely as a reversal from 1 to 

0). Because hip joint osteological characters of basal archosaurs are highly variable (Nesbitt, 

2011), character gains and losses in basal Dinosauria is assumed to occur with little directional 

bias. 

The ancestral state at each given node is estimated using the likelihood decision threshold 

(T), set to 2.0 by default in Mesquite. For each node, a particular character state was considered 

significant and preferred over the other character state if its likelihood value is higher by at least 

two log units than that of the other character state (following Maddison and Maddison, 2015). If 

the relative likelihoods of character states do not differ significantly at a particular node, the 

ancestral state at that node was inferred to be equivocal. Relative likelihood values for the 

derived state of each character were noted as RL in the text, with statistical significance indicated 

by an asterisk (*). We focused on the results from the consensus phylogenetic tree (Fig. 2a), and 

report results from the four alternative trees only if they returned significantly different character 

state estimations from the consensus tree. We then reconstructed hip joint articular soft tissues 

based on the sequence of transitions in osteological correlates for focal taxa along the sauropod 

and theropod lineages.  



RESULTS 

Overview of hip joint osteological correlates  

Extinct archosaurs exhibit a wide range of osteological characters in the hip joint, many 

of which are not present in extant birds and crocodylians. In a generalized dinosaurian hip joint, 

the inner acetabular wall is unossified, resulting in a ring-shaped bony acetabulum (Fig. 3c-i). 

This “perforated acetabular” (Kuznetsov and Sennikov, 2000; Nesbitt, 2011) morphology is the 

osteological correlate for the acetabular membrane. The dorsal portion of the bony acetabulum 

(the supraacetabulum) possesses craniocaudally distinct soft tissue attachments (Fig. 4). The 

acetabular labrum, a fibrous articular pad, occupies the cranial supraacetabulum. The 

antitrochanter cartilage, which consists of a fibrocartilaginous articular surface and a hyaline 

cartilage core, occupies the caudal acetabulum. The labrum’s attachment can be distinguished 

from the antitrochanter by its striated surface texture, as well as a distinctive ridge separating the 

two surfaces in well preserved specimens. The antitrochanter’s fibrocartilage surface 

peripherally attaches to the cortical bone surface on the ischial peduncle of the ilium and the ilial 

peduncle of the ischium and envelops the hyaline cartilage core at its center (Fig. 5). The 

antitrochanter’s hyaline cartilage core is an extension of the ilial-ischial synchondrosis and 

attaches to the calcified cartilage-covered growth plates on the two peduncles. In most Mesozoic 

fossils examined, the thin layer of calcified cartilage is weathered away. Nevertheless, the 

growth plate surface can be identified by the exposed trabecular bone immediately deep to the 

calcified cartilage layer. The combined osteological correlate for both antitrochanter fibro- and 

hyaline cartilage is here termed the bony antitrochanter. The antitrochanter of saurischian-line 

archosaurs is reconstructed as a simple articular pad as in extant birds and lepidosaurs, rather 

than the complex meniscus structure in crocodylians (Tsai and Holliday, 2015), due to the early 



phylogenetic split between ornithodirans and pseudosuchians (Nesbitt, 2011), and because the 

crocodylian meniscus has few unambiguous osteological correlates.  

The hip joint of fossil archosauromorphs possesses three distinct joint capsular ligaments. 

The iliofemoral ligament is homologous with the avian “pubofemoral” ligament (sensu Baumel 

and Raikow, 1993). The iliofemoral ligament originates on the supraacetabular rim 

(supraacetabular crest sensu Nesbitt, 2011) and inserts on the craniolateral metaphyseal surface 

of the femur, lateral to the extent of the fibrocartilage sleeve of the femoral head (Fig. 6). The 

femoral attachment of the iliofemoral ligament presents as a shallow depression in silesaurids 

(Fig. 6b, i) but is less distinct in dinosaurs. The two ventral joint ligaments are homologous with 

the ligamentum capitis femoris in birds (Cracraft, 1971; Tsai and Holliday, 2015). Specifically, 

the pubofemoral ligament originates on the pubic acetabular rim and is homologous with the 

avian ligamentum teres. The ischiofemoral ligament is homologous with the avian posterior 

acetabular ligament and originates on the ischial acetabular rim. Because an unossified inner 

acetabular wall is thought to be associated with the internal shift of the pubofemoral and 

ischiofemoral ligaments, the origins of these two ligaments is here inferred to be located on the 

inner pubic and ischial acetabular rims in dinosauromorphs with a perforated acetabulum. In 

contrast, dinosauromorphs that retain an ossified inner acetabular wall possess pubofemoral and 

ischiofemoral ligaments that originate on the outer pubic and ischial acetabular rim. The 

pubofemoral and ischiofemoral ligaments unite distally to form the ligamentum captis femoris 

and insert onto fovea capitis on the proximal femur. 

The epiphyseal cartilage on the saurischian proximal femur consists of a hyaline cartilage 

core and a peripheral fibrocartilage sleeve. The hyaline core attaches to the entire proximal 

growth plate surface (facies articularis antitrochanterica, sensu Hutchinson, 2001a), which 



includes both the femoral head (capital) and trochanteric regions (Fig. 7). The fibrocartilage 

sleeve attaches to a collar of metaphyseal cortical bone surrounding the growth plate and 

proximally overlap the capital extent of the femoral head and part of the femoral neck 

(trochanteric region), forming a layered fibro-hyaline cartilage structure in these regions (Fig. 6a-

h, 7b-f). A prominent metaphyseal line distinguishes the metaphyseal collar from the growth 

plate proximally, whereas a prominent ridge distinguishes the metaphyseal collar from the bony 

diaphysis distally (Fig. 6b-g, i-n). A patch of exposed trabecular bone distal to the metaphyseal-

diaphyseal junction is the osteological correlate for an articular bursa ventral to the hip joint 

capsule. 

Discrete character evolution 

1. Pelvis, acetabular perforation: (0) unperforated or incompletely perforated, (1) fully 

perforated.  

Basal dinosauromorphs retained unperforated acetabula, in which the bony inner 

acetabular wall is lined by hyaline cartilage. Multiple lineages of dinosaurs convergently evolved 

perforated acetabula, a condition characterized by an unossified and ligamentous inner acetabular 

wall. Up to three independent acquisitions of perforated acetabula occurred within 

ornithischians, theropods, and sauropodomorphs. Because the perforated acetabulum is the 

osteological correlate for internalized pubofemoral and ischiofemoral ligaments (Tsai and 

Holliday, 2015), these results suggest multiple convergent evolutions of the ligamentum captis 

femoris within Dinosauria. 

Among extant sauropsids, presence of the acetabular membrane is associated with an 

intracapsular origin of the pubofemoral and ischiofemoral ligaments. Tsai and Holliday (2015) 

further suggested that the acetabular membrane prevents compression of these two ventral joint 



ligaments between the femoral and acetabular articular surfaces, therefore serving a function 

analogous to the mammalian acetabular notch. Here we infer that the amount of acetabular 

perforation is associated with the extent of internal shift in the pubofemoral and ischiofemoral 

ligaments. An unperforated or incompletely perforated acetabulum indicates that the two ventral 

ligaments are largely capsular in origin, whereas a fully perforated acetabulum indicates that the 

two ventral ligaments form the intracapsular dual origins of the ligamentum capitis femoris. 

Acetabular perforation is difficult to assess in specimens missing pubes and ischia. Therefore, 

the acetabulum is scored as “fully perforated” only if the ilial portion of the inner acetabular wall 

is emarginated (ilium: ventral acetabular flange absent, sensu Martínez et al., 2011).  

Dinosauromorphs ancestrally possess an incompletely perforated acetabulum 

(RL~0.01*), indicating that the ventral joint ligaments function largely as external capsular 

ligaments, as in lepidosaurs (Tsai and Holliday, 2015). Although Sereno and Arcucci (1994) 

reconstructed the acetabulum of Marasuchus as possessing a small perforation at the puboischial 

junction, both of the ventral elements were described by Bonaparte (1975) as damaged. 

Therefore, Marasuchus is inferred here as possessing an unperforated acetabulum as in 

Lagerpeton. Silesaurids have been described by Dzik (2003) and Nesbitt et al. (2010) as 

possessing an unperforated acetabulum, and the “perforated” morphology on the puboischial 

margin of Asilisaurus (Fig. 3a) was due to breakage (Nesbitt, personal communication). It is 

unclear if a fully perforated acetabulum is the basal condition for dinosaurs (RL~0.18) or 

saurischians (RL~0.21), because the ancestral state for these nodes are ambiguous. Basal 

theropods possess a fully perforated acetabulum (RL~0.99*), as does the basal ornithischian 

Lesothosaurus. In contrast, basal sauropodomorphs retained an incompletely perforated 

acetabulum (RL~0.03*), with a single transition to a fully perforated condition in the common 



ancestor of Efraasia and more derived sauropodomorphs (RL~0.99*). Basal sauropodomorphs 

such as Panphagia possess incompletely perforated inner acetabular walls, in which the ventral 

rim of the ilium forms a distinct indentation (Fig. 3b). This indentation receives the ventral 

acetabular ligaments during femoral adduction and corresponds to the acetabular membrane in 

taxa with perforated acetabula. Alternative placement of Silesauridae as basal ornithischians 

(Fig. 2b) resolves the ancestral state for Saurischia with the presence of an incompletely 

perforated acetabulum (RL~0.04*). In contrast, alternative placement of Herrerasauridae (Fig. 

2c, RL~0.91*) and Eoraptor (Fig. 2d, RL~0.92*) both resolve the ancestral state for Saurischia 

with the presence of a completely perforated acetabulum. These results indicate that uncertainties 

in the phylogenetic placement of basal dinosauriformes affect the status of acetabular perforation 

as a synapomorphy of Dinosauria. Nevertheless, as much as three convergent acquisitions of 

perforated acetabula likely occurred within ornithischians, theropods, and sauropodomorphs. 

Because the perforated acetabulum is the osteological correlate for internalized pubofemoral and 

ischiofemoral ligaments, these results suggest multiple convergent evolutions of the ligamentum 

captis femoris within Dinosauria. 

Although it is not known whether the acetabular membrane forms a physical restriction 

for the medial insertion of the femoral head in dinosaurs, the femoral heads of extant archosaurs 

never insert medially beyond the inner acetabular rim and into the pelvic cavity (Stolpe, 1932; 

Kuznetsov and Sennikov, 2000). Therefore we refrained from inferring medial insertion of the 

femoral head beyond the inner acetabular rim as suggested by Chatterjee and Templin (2007) 

and Makovicky and Zanno (2011). Instead, we used the acetabular membrane as the indicator of 

functional acetabular depth. 



2. Pelvis, medial reduction of the supraacetabular rim. (0) laterally expanded, (1) medially 

reduced. 

 Basal dinosauromorphs possessed laterally expanded dorsal outer rim of the acetabulum, 

here termed the supraacetabular rim. The supraacetabular rim provides attachment for the 

acetabular labrum on its ventral surface (the acetabular “ceiling”) and provides origin for the 

iliofemoral ligament on its apical edge. Medial reduction of the supraacetabular rim shifts the 

origin of the iliofemoral ligament medially and decreases the area of contact between the 

acetabular labrum and the femoral neck (trochanteric region of the facies articularis 

antitrochanterica) when the femur is held in a retracted or vertical position relative to the 

craniocaudal axis of the sacrum.  

 Lagerpetids and silesaurids possess laterally expanded supraacetabular rims, but 

sauropodomorphs and multiple lineages of theropods independently reduced the rim. Among 

basal sauropodomorphs, plateosaurids (Ruehleia + Plateosaurus, RL~0.99*, Fig. 3c) and the 

common ancestor of Sarahsaurus and more derived sauropodomorphs (RL~0.99*, Fig. 3d, 4a, b) 

possess reduced supraacetabular rims, but it is unclear if the two lineages independently reduced 

the supraacetabular rim (RL~0.81). Basal theropods maintained a laterally expanded 

supraacetabular rim in the stem lineage, but derived taxa in several averostran (Ceratosauria + 

Tetanurae) lineages independently reduced the rim. All alternative tree topologies yielded similar 

patterns in character state transitions as the consensus phylogenetic tree. Overall, medially 

reduced supraacetabular rims evolved independently in sauropodomorphs and multiple lineages 

of theropods. 

3. Pelvis, orientation of the supraacetabular rim. (0) laterally oriented, (1) ventrolaterally 

oriented. 



 Basal dinosauromorphs possess laterally oriented supraacetabular rim, a morphology 

retained by sauropodomorphs. However, theropods underwent a single transition to a 

ventrolaterally oriented supraacetabular rim before multiple, independent reversions to a laterally 

oriented configuration. Ventrolateral orientation of the supraacetabular rim indicates an ossified 

craniodorsal hip joint capsule. A ventrolaterally oriented supraacetabular rim increases the depth 

of the bony acetabulum dorsally and orients the acetabular labrum ventromedially. Moreover, 

because the iliofemoral ligament originates on the supraacetabular rim, ventral orientation of the 

rim signifies partial ossification of the ligament at its origin. These transitions allow the entire 

proximal femur to insert deeper into the acetabulum during femoral retraction. A ventrolaterally 

oriented supraacetabular rim also forms a bony constraint to the femur laterally, thus restricting 

abduction and long axis rotation at the hip joint. 

Basal dinosauromorphs possess a laterally oriented supraacetabular rim (RL~0.01*, Fig. 

3a), and this morphology is retained in Saurischia (RL~0.02*) and Sauropodomorpha 

(RL~0.01*, Fig. 3b-d). The ancestral state of Theropoda is ambiguous (RL~0.51). Both 

Herrerasauridae (RL~0.99*, Fig. 3e) and Neotheropoda (Tawa + more derived theropods, Fig. 

4c) possess ventrolaterally oriented supraacetabular rims, but Eodromaeus possesses a laterally 

oriented rim. The ventrolaterally oriented supraacetabular rim is retained among the basal 

theropod lineage and underwent two unambiguous reversions to the laterally oriented state in 

Carnotaurus and Avetheropoda (Allosauroidea + Coelurosauria, RL~0.01*, Fig. 4d). It is 

unclear whether the ventrolaterally oriented supraacetabular rim in Megalosauroidea (RL~0.99*) 

signifies a retention of the basal Neotheropoda morphology or a secondary reversion, because the 

ancestral state of Orionides (Megalosauroidea + Avetheropoda) is equivocal (RL~0.75). 

Alternative placement of Herrerasauridae (Fig. 2c; RL~0.05) and Eoraptor (Fig. 2d; RL~0.11*) 



resolves the ancestral state reconstructed for Theropoda as retaining a laterally oriented 

supraacetabular rim. We infer that, whereas sauropodomorphs retained the laterally oriented 

supraacetabular rim of basal dinosauromorphs, basal theropods underwent a transition to a 

ventrolaterally oriented rim, before multiple, independent reversions to a laterally oriented 

configuration. 

4. Pelvis, Expansion of the bony antitrochanter. (0) unexpanded, (1) expanded. 

The bony antitrochanter consists of the rostrolaterally facing growth plate surfaces of the 

ilioischial joint, which supported the synchondrosis between the ilium and the ischium in life. 

Basal dinosaurs (Thulborn, 1972; Novas, 1994; Butler, 2010) and sauropodomorphs (Wilson, 

2002; Langer, 2003) possess unexpanded bony antitrochanters, in contrast to the expanded 

morphology seen in extant birds (Stolpe, 1932; Baumel and Witmer, 1993), maniraptorans 

(Allen et al., 2009; Maryańska, 2002; Turner et al., 2012), and some ornithischians (Romer, 

1927; Maidment and Barrett, 2012). The bony antitrochanter is expanded if its subchondral 

growth plates form a distinct articular surface caudal to the sub-circular outline of the acetabular 

fossa in lateral view. Since the fibrocartilaginous surfaces of the antitrochanter contacts the 

fibrocartilaginous surface of the femoral neck, expansion of the bony antitrochanter indicates an 

increase in the femoral neck-antitrochanter articulation at the caudal acetabulum.  

Basal dinosauromorphs possess unexpanded antitrochanters (RL~0.01*), and this 

morphology is maintained throughout sauropodomorphs (Fig. 3b-d). Basal theropods also retain 

unexpanded antitrochanters, and this character state is maintained in the stem theropod lineage 

(Fig. 3e-g). Maniraptorans underwent several independent transitions among each terminal clade, 

resulting in laterally expanded antitrochanters in Therizinosauria, Oviraptorosauria (Fig. 3h), 

Deinonychosauria, and Avialae. Alternative placement of Archaeopteryx as a stem-



deinonychosaur complicates the character transition at each node within Deinonychosauria 

considerably. Under the alternate topology, the ancestral state of most nodes within 

Deinonychosauria remain unresolved, with only one unequivocal transition to the expanded 

antitrochanter at Velociraptorinae (Deinonychus + Velociraptor, RL~0.99*). These results 

suggest that an expanded antitrochanter evolved multiple times within the maniraptoran 

radiation, likely correlated with independent convergences in avian-like load bearing femoral 

postures. 

5. Pelvis, shape of the ischial peduncle of the ilium. (0) flat, (1) cranially concave. 

 The ilial part of the bony antitrochanter is formed by the ischial peduncle of the ilium. In 

basal dinosauromorphs and theropods, the ischial peduncle is largely planar and oriented 

craniolaterally. In contrast, the ischial peduncle of large sauropods is cranially concave and 

forms a cranially oriented “U” shape in ventral view (Fig. 4b, dotted outline). This morphology 

first appeared in Anchisauria (RL~0.99*) and is retained throughout Sauropoda. No other 

dinosauromorphs possess cranially concave ischial peduncles. Based on osteological correlates 

of supraacetabular soft tissues, the plesiomorphic craniolaterally oriented bony antitrochanters 

supported a hyaline cartilage core, encapsulated by a fibrocartilage surface. In contrast, the 

cranially oriented, U-shaped antitrochanters of anchisaurian sauropodomorphs incorporated the 

acetabular labrum as part of the articular surface. All alternative tree topologies yielded similar 

patterns in character state transitions as the consensus tree. 

6. Pelvis, co-ossification of the antitrochanter. (0) open synchondrosis, (1) co-ossified (fused or 

tightly sutured). 

The antitrochanter of archosauromorphs exhibits a diverse range of ossification patterns, 

likely associated with ontogeny, phylogeny, and load bearing function. Most dinosauromorphs 



possess an open synchondrosis at the bony antitrochanter, such that the ischial and ilial 

peduncles were bridged by a hyaline cartilage antitrochanter. Although extant birds possess fully 

co-ossified bony antitrochanters at skeletal maturity, evolutionary inference of a co-ossified 

antitrochanter in non-avian archosaurs remains elusive due the multiple instances of its gain 

among phylogenetically disparate taxa, as well as the late onset of its fusion during ontogeny. 

Among extant archosaurs, crocodylians maintain an open synchondrosis between the 

ischial and ilial peduncles throughout life, even as large adults (Tsai and Holliday, 2015). In 

contrast, birds possess a synchondrosis as juveniles but completely fuse the bony antitrochanter 

at skeletal maturity (Hertel and Campbell, 2007). Antitrochanter ossification is difficult to 

investigate in fossils due to two confounding issues. First, most taxa are represented by small 

numbers of individuals for which ontogenetic status cannot be consistently inferred. Second, in 

contrast to birds, non-avian dinosaurs achieve sexual maturity prior to skeletal maturity 

(Erickson et al., 2007; Lee and Werning, 2008; Hone et al., 2016), such that many specimens 

represent animals still undergoing active bone growth. The current analysis addresses these 

caveats by only considering specimens inferred to be adults or subadults. We infer a co-ossified 

bony antitrochanter for a taxon if any individual possesses ischial and ilial peduncles that are 

either fused or articulate via immobile, deeply interdigitated sutures. Conversely, we identify an 

open synchondrosis if the ilium and ischium is naturally disarticulated, without visible breakage 

in the peduncles. Admittedly, this method potentially introduces errors in taxa for which the 

terminal adult morphology is not known. Therefore, the following data should be considered as a 

minimal estimate in the actual number of saurischian-line archosaur taxa with co-ossified 

antitrochanters.  



Basal dinosauromorphs possess an open synchondrosis at the bony antitrochanter 

(RL~0.01*, Fig. 3a). The bony antitrochanters of sauropodomorphs retained the open 

synchondrosis (Fig. 3b-d, 5a). In contrast, theropods maintained an unfused bony antitrochanter 

in the crownward stem lineage but underwent four independent transitions to the co-ossified state 

according to the consensus phylogenetic tree (Fig. 2a). The bony antitrochanter is co-ossified in 

Herrerasaurus, Coelophysis, Ceratosauria (RL~0.99*, Fig. 3e, 5b), and avialans (RL~0.99*). In 

Herrerasaurus only the largest individual studied (MCZ 4381, Fig. 3e) possesses a co-ossified 

bony antitrochanter, whereas all Coelophysis specimens in this analysis possess co-ossified bony 

antitrochanters, including the smallest individual studied (YPM 41197). Ceratosauria possess 

fully co-ossified bony antitrochanters (RL~0.99*). The ilium and ischium of Elaphrosaurus are 

mechanically separated at the ischium’s ilial peduncle in the display mount, but full fusion of the 

bony antitrochanter is nevertheless observable. Bonaparte et al. (1990) described the bony 

antitrochanter of Carnotaurus as “partially fused”, but because the bony antitrochanter is 

obscured due to plaster reconstruction, it was not coded for this taxon. Large, presumably adult 

Ceratosaurus possess fully co-ossified bony antitrochanters (USNM 4735, Gilmore, 1920; 

Carrano and Sampson, 2008), but juveniles, represented by TPI 1010, possess an open 

synchondrosis that articulates via a sharply convex, rugose ischial peduncle and a deeply 

concave ilial peduncle. This morphology suggests a tightly interdigitated, immobile bony 

antitrochanter. However, because the convex-concave articulation is unobservable for taxa 

possessing co-ossified bony antitrochanters, the articular morphology of the peduncles is not 

scored in this study. Nevertheless, convex-concave articulation between the ilium and ischium is 

widespread across Avetheropods, as evident in Siats, Ornitholestes, Ornithomimosauria, 

Tyrannosauroidea, and Falcarius (Fig. 5d). Among Tyrannosaurus, the largest individual 



(FMNH PR 2081) possesses incipient fusion of at the bony antitrochanter (Fig. 5c), but the 

peduncles are not extensively co-ossified. The convex-concave articulation is absent in 

Megalosauroidea and Maniraptora. The bony antitrochanter is co-ossified in all avialans, 

including both Archaeopteryx and one specimen of Patagopteryx (MACN N-11) included in this 

analysis. However, it is not known if Archaeopteryx and more derived avialans independently 

evolved a co-ossified antitrochanter, because the ancestral state for Avialae is unresolved 

(RL~0.87). Alternative placement of Archaeopteryx reconstructs two independent gains of 

antitrochanter co-ossification in avialans and Archaeopteryx itself but otherwise did not alter the 

sequence of character transitions within theropods.  

These results indicate that, regardless of the condition achieved by adults at full skeletal 

maturity, most dinosauromorphs possess an open synchondrosis at the bony antitrochanter during 

much of their lifespan, bridged by a hyaline cartilage core similar to those observed in juvenile 

birds. However, evolutionary inference of a co-ossified antitrochanter in the theropod lineage 

remains elusive due the multiple instances of its gain among phylogenetically disparate taxa (see 

Discussion). Additional data on the ontogenetic data on basal theropods will provide further 

insights on the evolution of antitrochanter ossification. 

7. Femur, Femoral head deflection: (0) craniomedially deflected; (1) medially deflected. 

 Within Dinosauria, sauropodomorphs, theropods, and ornithischians independently 

evolved medially deflected femoral heads. Femoral head deflection is here defined as the angle 

between the capitular-trochanteric axis of the proximal femur and the mediolateral axis of the 

distal condyles, hereafter abbreviated the proximodistal angle. A craniomedially deflected 

femoral head possesses a proximodistal angle of ~45°, whereas a medially deflected femoral 

head possesses a proximodistal angle close to 0° (Fig. 1c). Although distinction between these 



two character states is possible in most specimens examined, the precise angle of deflection is 

difficult to quantify due to unavoidable taphonomic distortions, such as torsion and flattening. 

Therefore, femoral head deflection is analyzed as a discrete binary character and only coded for 

taxa represented by well-preserved femora. 

 Basal dinosauromorphs possess craniomedially deflected femoral heads (RL~0.01*). In 

sauropodomorphs, a medially deflected femoral head evolved by the common ancestor of 

plateosaurids and more derived taxa (RL~0.95*), whereas in theropods the transition occurred at 

Avetheropoda (RL~0.99*). All alternative tree topologies yielded similar patterns in character 

state transitions as the consensus tree. Lesothosaurus, the only ornithischian included in the 

current study, possesses a medially deflected femoral head. These results support Carrano (2000) 

that the medially deflected femoral head evolved independently in sauropodomorphs, theropods, 

and ornithischians. 

8. Femur, surface texture of the proximal femoral growth plate: (0) smooth ; (1) rugose. 

Silesaurids, sauropodomorphs, and multiple lineages of theropods independently evolved 

thick layers of epiphyseal hyaline cartilage on the proximal femur, as indicated by the presence 

of rugose growth plate surface textures. Among extant tetrapods, growth plate rugosities are 

present in “incompletely ossified” joints of immature birds, lepidosaurs, and mammals (Haines, 

1942; 1975) and are associated with the presence of a thick epiphyseal hyaline cartilage layer 

that differs significantly from the contour of the subchondral growth plate surface (Snover and 

Rhoudin, 2008; Holliday et al., 2010; Tsai and Holliday, 2015). Numerous studies have noted 

rugosities on the subchondral surfaces of large saurischians (sauropods, Marsh, 1896; theropods, 

Gilmore, 1920; Brochu, 2003), rhynchosaurs (this study), and phytosaurs (Zeigler et al., 2003), 

suggesting the presence of thick hyaline cartilage layers in these taxa. The current study uses 



growth plate rugosities as the osteological correlate for thick hyaline cartilage. Although Marsh 

(1896) noted the similarity between rugose subchondral surfaces of dinosaurs with the ossifying 

growth plates of juvenile mammals and birds, this study does not employ growth plate rugosities 

as an ontogenetic indicator, because many extinct saurischians retain growth plate rugosities 

throughout ontogeny, even as large-bodied, presumably adult individuals (Brochu, 2003; Tidwell 

et al., 2005).  

 Basal dinosauromorphs possess smooth subchondral growth plates on the proximal femur 

(RL~0.02*, Fig. 6a, 7a, j), but this morphology is independently lost in silesaurids (Fig. 7k), 

sauropodomorphs, and multiple lineages of theropods. Among sauropodomorphs, Eoraptor 

retains the smooth growth plate morphology, whereas plateosaurids (RL~0.99*) and the common 

ancestor of Mussaurus and sauropods (RL~0.96*) possess highly rugose growth plate surfaces. It 

is unclear whether the plateosaurid morphology (Fig. 6j, 7l) and that of the more derived 

sauropodomorphs (Fig. 6k, 7m) resulted from a single or two independent acquisition (RL~0.80), 

because Adeopapposaurus possesses a smooth growth plate similar to Eoraptor and basal 

dinosauromorphs. Nevertheless, growth plate rugosities are maintained throughout Sauropoda. 

Theropods retained the smooth proximal femoral growth plate in basal dinosauromorphs 

(Fig. 6e, l, m, 7e) but underwent multiple transitions to a more rugose surface morphology. 

When present in theropods, growth plate rugosities typically possess lower amplitudes than in 

sauropodomorphs, resulting in a more subtle morphology. Rugose growth plates are present in 

the larger individuals of Ceratosaurus (Fig. 7o) and Allosaurus but not in smaller, presumably 

juvenile individuals. Rugose growth plate is absent in basal Tyrannosauroidea (RL~0.01*) but 

present in Alioramus and more derived tyrannosaurids (RL~0.93*, Fig. 7f). Lastly, although the 

stem Maniraptoriformes lineage maintained smooth growth plates on the proximal femur, 



Ornithomimus, Anzu (Fig. 7q), and Deinonychus possessed rugose growth plates. All alternative 

tree topologies yielded similar patterns in character state transitions as the consensus 

phylogenetic tree. These results indicate that silesaurids, sauropodomorphs, and multiple 

lineages of theropods independently evolved thick layers of epiphyseal hyaline cartilage. 

Estimates of epiphyseal cartilage thickness are noted in the discussion (see below). 

9. Femur, concentration of irregular rugosities on the femoral head: (0) absent; (1) present. 

 The femoral heads of large sauropodomorphs possess highly pronounced, cauliflower-

like irregular rugosities (Fig. 6d, k, 7d, l, m). In contrast, the femoral heads of theropods and 

basal dinosauromorphs lack concentrated rugosities, instead possessing an overall smooth 

surface texture or largely uniformly distributed rugosities. The presence of capital-trochanteric 

polarity indicates regional differences in hyaline cartilage thickness: the more rugose capital 

region of the growth plate would possess a significantly thicker hyaline cartilage layer than the 

smoother trochanteric region. In particular, the highly convoluted rugosities on the femoral head 

of Diplodocus, Tornieria, and Apatosaurus possess amplitudes up to 20 mm, greater than the 

thickness of all known epiphyseal cartilages among extant tetrapods. Because it is unlikely that 

the cartilaginous articular surface possess similarly convoluted surface texture as the growth 

plate, the articular cartilage of large sauropods must have exceeded 20 mm in thickness. 

Irregularly rugose femoral head growth plates are observed in plateosaurids (RL~0.99*) 

and the common ancestor of Mussaurus and sauropods (RL~0.99*), indicating that both lineages 

possess thick hyaline cartilage on the femoral head. The absence of femoral head rugosities in 

Adeopapposaurus (Martínez, 2009) complicates inferences on the origin of thick hyaline 

cartilage within Sauropodomorpha (RL~0.75). Therefore, it is unclear whether femoral head 

rugosities originated once at the common ancestor of plateosaurids and other sauropodomorphs, 



with one reversal at Adeopapposaurus, or rather the rugose morphology independently evolved 

in the two clades. All alternative tree topologies yielded similar patterns in character state 

transitions as the consensus tree. 

10. Femur, transphyseal striations: (0) absent, (1) present.  

 Some saurischians possess rugosities on the subchondral surface contact the metaphyseal 

line peripherally and excavate parallel striations which span across the growth plate and the 

metaphyseal collar (Fig. 7f, g, l, m, o). These transphyseal striations are oriented perpendicular to 

the capital-trochanteric axis of the proximal femur and give the metaphyseal junction a “wavy” 

appearance. Transphyseal striations in saurischians are the osteological correlates for highly 

integrated attachments between the fibrocartilage, hyaline cartilage, and subchondral growth 

plate across the metaphysis of the proximal femur. 

Basal dinosauromorphs lack transphyseal striations (RL~0.01*) but underwent multiple 

transitions to the derived morphology along the lineages leading to sauropodomorphs and 

theropods. Among sauropodomorphs, it is unclear whether transphyseal striations evolved 

independently in plateosaurids (RL~0.99*) and anchisaurians (RL~0.98*), or rather if this 

character shared a common origin (RL~0.81), because Adeopapposaurus lack transphyseal 

striations. In theropods, the transphyseal striations are present in Ceratosaurus (Fig. 7o), 

Allosauroidea (RL~0.91*), Tyrannosauridae (RL~0.98*, Fig. 7f), Ornithomimus, and Anzu. 

Although transphyseal striations were not observed on other ornithomimosaurs and 

oviraptorosaurs, their absence may be partly due to poor preservation of the metaphyseal 

boundary in most specimens. Transphyseal striations are wholly absent in Paraves (RL~0.01*), 

even in well preserved specimens. These results indicate that sauropodomorphs and multiple 

lineages of theropods independently gained transphyseal striations. 



The absence of transphyseal striations among extant archosaurs makes inferring soft 

tissues in extinct dinosaurs difficult. Nevertheless, we hypothesize that the striations in dinosaurs 

indicate uneven fronts of endochondral and perichondral ossifications along the metaphyseal 

line. Specifically, the wavy morphology on the growth plate provides insertion for 

correspondingly protrusions on the hyaline cartilage core; whereas continuation of the wavy 

morphology on the metaphysis provides insertion for corresponding protrusions of the 

fibrocartilage sleeve. The presence of transphyseal striations in saurischians thus indicates highly 

integrated attachment morphology between the fibrocartilage, hyaline cartilage, and subchondral 

growth plate across the metaphyseal junctions. 

11. Femur, fovea capitis: (0) indistinct, (1) planar or concave. 

 The fovea capitis is the femoral insertion point of the ligamentum capitis femoris. The 

fovea is located on the capital-medial surface of the proximal femoral growth plate, between the 

anatomical femoral head and the posteromedial tuber (sensu Nesbitt, 2011). Among extant 

archosaurs, the ligamentum capitis presents a continuum of attachment topology across 

phylogeny and ontogeny. In crocodylians and skeletally immature birds, the ligamentum capitis 

inserts onto the relatively thick epiphyseal cartilage layer but does not progress into the 

subchondral growth plate. This morphology is indicated by an indistinct fovea that follows the 

convex contour of the subchondral surface. In contrast, the ligamentum capitis of skeletally 

mature birds inserts past the relatively thin epiphyseal cartilage layer and excavates a 

distinctively planar or concave fovea on the otherwise convex femoral growth plate. The depth 

of the fovea capitis is therefore the osteological correlate for the ligamentum capitis’ depth of 

insertion into the subchondral growth plate and serves as an additional indicator in the relative 

thickness of the epiphyseal cartilage on the femoral head. Among dinosaurs, distinctively 



concave or planar foveae are rarely observed in coelurosaurian theropods, suggesting the 

evolution of deeper insertion of the ligamentum capitis on the femoral head in these taxa. 

Within the saurischian lineage, the fovea capitis ranges from indistinct in 

sauropodomorphs (Fig. 7d, m), planar in tyrannosaurids (Fig. 7f), and deeply convex in extant 

birds. These observations indicate that the insertion depth of the ligamentum capitis, as well as 

the thickness of the epiphyseal hyaline cartilage, varies across extinct saurischians. In order to 

account for the ontogenetic influence and diagenetic alteration on the proximal femur, the current 

analysis simplified fovea morphology into two discrete states: indistinct, in which the fovea 

follows the convex contour of the remaining subchondral surface; or distinct, in which the fovea 

can clearly be distinguished by a planar surface or concavity.  

Basal dinosauromorphs possess an indistinct fovea capitis (RL~0.01*), and this 

morphology is maintained throughout sauropodomorphs. Theropods underwent several 

transitions to the derived character state in tyrannosaurids (RL~0.99*, Fig. 7f), Nothronychus, 

some oviraptorosaurs (Fig. 6o, 7q), and Euornithes. These results indicate that multiple theropod 

lineages independently evolved deeper insertion of the ligamentum capitis on the subchondral 

growth plate of the femoral head. 

12. Femur, ischiofemoral ligament sulcus: (0) shallow, (1) deep. 

The ischiofemoral ligament originates on the inner rim of the ischial acetabulum and 

merges with the pubofemoral ligament distally to form the ligamentum capitis femoris. The 

ligamentum capitis femoris inserts onto the fovea capitis on the femoral head. In most 

dinosauromorphs, the ischiofemoral ligament excavates a sulcus on the capital-medial 

metaphyseal collar of the proximal femur. The sulcus varies considerably in depth, ranging from 

a shallow, indistinct indentation in basal dinosauromorphs (Nesbitt et al., 2009), basal 



sauropodomorphs (Novas, 1996; Müller et al., 2015), and birds (Tsai and Holliday, 2015) to a 

deep, distinct groove in most non-avian theropods (Syntarsus, Rowe, 1989; Gallimimus, 

Osmólska et al., 1972). The sulcus is the osteological correlate for the passage taken by the 

ischiofemoral ligament but does not provide attachment for any intrinsic or capsular ligaments. 

The width of the ischiofemoral ligament sulcus can be visualized when the femur is oriented in 

caudomedial view, and indicates the diameter of the ligament itself. 

The current analysis describes the ischiofemoral ligament sulcus depth as a binary 

character, the continuous spectrum of sulcus depth, width, and angle, suggesting that the 

ischiofemoral ligament varies considerably in thickness and course within Dinosauromorpha. 

Nevertheless, basal dinosauromorphs possess a shallow but distinct ischiofemoral ligament 

sulcus (RL~0.01*, Fig. 7a, j). Basal sauropodomorphs such as Plateosaurus (SMNS F 14-91294, 

Fig. 7l) and basal sauropods such as Patagosaurus (MACN CH 1986) retained the 

dinosauromorph morphology, whereas derived sauropods such as Diplodocus (DMNH 462, Fig. 

6k) and Camarasaurus (YPM 4625, DNM 4514, Fig. 7d, m) completely reduced the sulcus. In 

theropods, the common ancestor of Tawa and more derived taxa acquired a deeply excavated 

ischiofemoral ligament sulcus (RL~0.99*), but the stem lineage underwent several reversions in 

Maniraptora (e.g., Anzu among oviraptorosaurs, Fig. 7q; Euornithes, RL~0.04*). All alternative 

trees yielded similar patterns in character state transitions as the consensus phylogenetic tree.  

13. Femur, cartilage cone trough: (0) absent, (1) present. 

 The cartilage cone is a convex extension of the epiphyseal hyaline cartilage core that 

inserts into the metaphyseal growth plate (Carter et al., 1998). Presence of a cartilage cone on the 

proximal femur can be identified by a capital-trochanterically oriented trough on the growth 

plate (Tsai and Holliday, 2015). In extant archosaurs, the cartilage cone results from the 



relatively slower progression of endochondral ossification compared to perichondral ossification 

during the neonatal period (Carter et al., 1998). The cartilage cone disappears as the two forms of 

ossification synchronize (Carter et al., 1998) and is entirely absent in juvenile crocodylians and 

birds (Tsai and Holliday, 2015). 

In many fossil archosauromorphs, the osteological correlate of the cartilage cone persists 

in post-neonatal individuals. The cartilage cone is inferred to be present in non-archosaurian 

archosauromorphs (e.g., Erythrosuchus: Nesbitt, 2011, Hyperodapedon, juvenile 

Trilophosaurus), stem-suchians (e.g., poposauroids, Prestosuchus), silesaurids (Ezcurra, 2006; 

Nesbitt, 2011), sauropodomorphs (Gyposaurus = Massospondylus, Galton and Cluver., 1976; 

Saturnalia, Langer, 2003; Pampadromaeus, Müller et al., 2015), theropods (e.g., Staurikosaurus, 

Galton, 1977; Coelophysis, Padian, 1986), and ornithischians (Lesothosaurus, Sereno, 1991). 

Although the cartilage cone tends to be shallower and less distinct in dinosaurs than in 

silesaurids, the depth and distinctiveness of the cartilage cones are highly subject to the degrees 

of taphonomic breakage, deformation, and subsequent preparation of the fossil material. 

Moreover, the cartilage cone’s depth is expected to be ontogenetically variable because 

endochondral ossification progresses continuously during growth. These factors limit the current 

analysis to distinguishing the cartilage cone morphology as a binary discrete character. The 

cartilage cone is coded as “present” in a taxon if a capital-trochanterically oriented trough is 

retained in post-neonatal individuals. 

 Basal dinosauromorphs lack a cartilage cone on the proximal femur (RL~0.02*, Fig. 7j), 

but Dinosauriformes evolved a cartilage cone (RL~0.99*). In particular, silesaurids possess a 

deep, highly distinct trough on the growth plate surface (Fig. 6i, 7j); whereas dinosaurs possess a 

shallow, indistinct trough that gradually fades into the convex contours of the proximal femur 



(Fig. 7n, o). Sauropodomorphs and theropods independently reduced, and ultimately lost the 

cartilage cone on the proximal femur during the evolution of crown lineages. Among 

sauropodomorphs, the cartilage cone is present in plateosaurids and Adeopapposaurus but is 

absent in the common ancestor of Ammosaurus and more derived sauropodomorphs (RL~0.99*). 

Among theropods, the cartilage cone is present early in the stem lineage but underwent two 

independent losses. Basal herrerasaurids such as Staurikosaurus possess the cartilage cone (Fig. 

7n), but the cone is absent in Herrerasaurus (Fig. 7e). Basal neotheropods retain very shallow 

cartilage cones (RL~0.99*, Fig. 6l, 7n), but the cone is absent in Orionides (RL~0.99*). All 

alternative tree topologies yielded similar patterns in character state transitions as the consensus 

tree, and indicate that sauropods and theropods independently reduced, and ultimately lost, the 

cartilage cone during the evolution of crown lineages.  

14. Femur, metaphyseal collar: (0) unexpanded, (1) expanded. 

 The metaphyseal collar is a raised surface of cortical bone surrounding the proximal 

femoral growth plate. The metaphyseal collar is the bony attachment for the fibrocartilage sleeve 

and therefore serves as the osteological correlate for the extent of fibrocartilage on the 

metaphysis. The metaphyseal collar can be distinguished proximally from the growth plate by a 

prominent metaphyseal line and distally from the diaphysis by a patch of exposed trabecular 

bone, indicative of the synovial bursa. Basal dinosauromorphs possess unexpanded metaphyseal 

collar, indicating that that the fibrocartilage sleeve possesses limited bony attachment on the 

metaphysis. The metaphyseal collar is expanded in Dinosauriformes, but reverted to the 

unexpanded state within at least two lineages of maniraptoran theropods. The morphological 

similarity between the proximal femur of birds and non-avian pennaraptorans suggest that bird-

like composite fibro-hyaline cartilage evolved prior to the first occurrence of Avialae. 



Among extant sauropsids, the metaphyseal collar is most conspicuous in crocodylians 

and indicates an expanded bony attachment for the fibrocartilage sleeve. In contrast, birds, 

lepidosaurs, and turtles possess fibrocartilage sleeves with smaller attachment to the bony 

metaphysis and possess indistinct metaphyseal collars (Tsai and Holliday, 2015). The presence 

of a distinct metaphyseal collar indicates a crocodylian-like fibrocartilage attachment on the 

proximal femur, in which the fibrocartilage sleeve possesses substantial bony attachments on the 

bony metaphysis. An unexpanded metaphyseal collar indicates smaller bony attachments for the 

fibrocartilage sleeve.  

 Basal dinosauromorphs possess an unexpanded metaphyseal collar (RL~0.08*), a 

condition shared by basal archosaurs. This indicates that the fibrocartilage sleeve possesses 

limited bony attachment on the metaphysis. However, an incipient metaphyseal collar is present 

in Dromomeron as a small patch of cortical bone between the growth plate and the bursal 

attachment surface (Fig. 6a). Dinosauriformes possess expanded metaphyseal collars 

(RL~0.99*). In particular, silesaurids expanded the collar on the capital and entire medial 

periphery of the proximal femoral growth plate (Fig. 6b, 7b), whereas basal saurischians 

expanded the collar only on the capital periphery of the growth plate (Plateosaurus, Fig. 6c; 

Coelophysis, Fig. 6e). Among dinosaurs, sauropodomorphs expanded the collar both laterally 

and medially, surrounding the femoral head in a C-shaped “cuff” in proximal view (Fig. 6d, k, 

7d). This morphology indicates that the fibrocartilage sleeve is particularly well developed on the 

periphery of the thick hyaline cartilage cap on the capital growth plate surface. In an 

exceptionally well preserved Camarasaurus femur (YPM 4625, Fig. 7d), the fibrocartilage 

sleeve is partially calcified on the capital metaphyseal collar, thereby providing support for the 

current soft tissue inferences in other sauropodomorphs. 



In theropods, the metaphyseal collar is only expanded on the craniolateral surface of the 

proximal metaphysis, whereas the caudomedial surface is excavated the ischiofemoral ligament 

sulcus (see character 12). Avetheropods greatly expanded the metaphyseal collar on the 

craniolateral metaphyseal surface as a prominent shelf, bordered by a right-angled ridge (Fig. 6f, 

m). The metaphyseal collar retains its expanded morphology throughout Avetheropoda, but 

underwent one or more reversion in Maniraptora (RL~0.85) to the unexpanded condition. The 

unexpanded metaphyseal collar of maniraptorans is inferred not to be homologous with those of 

basal dinosauromorphs but instead signifies a trend towards the avian-like proximal femoral 

articular cartilage (Wess et al., 1997). As in birds, the fibrocartilage sleeve of non-avian 

maniraptorans possesses little attachment to the bony metaphysis but rather expands proximally 

and integrates with the hyaline cartilage core to form a composite cartilage articular surface 

(Wess et al., 1997; Tsai and Holliday, 2015). It is therefore inferred that bird-like proximal 

femoral epiphyseal cartilage first evolved in non-avian theropods. All alternative tree topologies 

yielded similar patterns in character state transitions as the consensus tree. 

Summary 

Overall, results of this study indicate that most saurischian dinosaurs construct the entire 

ventral half of their femoral heads using a fibrocartilage sleeve, similar to crocodylians. 

However, because basal dinosauriformes, stem-archosaurs (Trilophosaurus, rhynchosaurs, 

phytosaurs), and stem-suchians (aetosaurs, basal loricatans) lack expanded metaphyseal collars, 

the crocodylian morphology does not reflect the ancestral archosaur condition. Rather, dinosaurs 

and crocodylians independently evolved expanded fibrocartilage attachments on the metaphyseal 

cortical bone. In contrast, secondary reduction of the metaphyseal collar occurred in the 



maniraptoran lineage, and indicates the evolution of a composite fibro-hyaline cartilage 

epiphysis on the proximal femur, a morphology retained by extant birds. 

DISCUSSION 

Dinosauromorphs underwent multiple, iterative convergences and divergences in hip 

joint anatomy, reflecting a spectrum of locomotor adaptations. The loss of articular soft tissues in 

the fossil record have traditionally hindered inferences of joint loading, range of motion, and 

kinematics (Holliday et al., 2010; Bonnan et al., 2013). In this study, we examine the 

evolutionary transitions of several key anatomical features in basal dinosauromorphs and their 

implications on the origin of dinosaur locomotor posture. A summary of key morphological 

features and evolutionary trends in the Dinosauromorph hip joint is provided in Fig. 9. 

Evolution of the cartilage cone in non-dinosaurian Dinosauromorpha 

 Our results support previous inferences that non-dinosaurian dinosauromorphs were able 

to assume adducted hind limb postures (Dzik, 2003; Nesbitt et al., 2009; 2010) as part of their 

locomotor repertoire. However, our reconstructed epiphyseal and ligament topologies show that 

that the hip joints of lagerpetids, Marasuchus, and silesaurids were capable of a greater range of 

mediolateral and axial rotation than reconstructed by previous studies. The basal dinosauromorph 

hip joint is exemplified by lagerpetids and Marasuchus, in which the inner acetabular walls are 

unperforated, indicating that the ventral joint ligaments remain as capsular ligaments in their 

origin. The height of the acetabulum is relatively tall compared to the dorsoventral and 

mediolateral diameters of the proximal femur, similar to extant lepidosaurs and crocodylians, 

suggesting that a substantial amount of soft tissue maintained hip articulation in lagerpetids and 

Marasuchus. Basal dinosauromorphs possess smooth, convex femoral growth plates similar to 

crocodylians and adult birds. For a 135 mm Dromomeron femur, the proximal hyaline cartilage 



layer is estimated to be 3.2 ±1.1 mm thick (mean ± sd based on cartilage cap estimates in 

Holliday et al., 2010) based on the adult Struthio cartilage correction factor; and 4.3 ±1.1 mm 

thick based on the Alligator cartilage correction factor. Due to the basal phylogenetic position of 

Dromomeron within Dinosauromorpha, femoral cartilage reconstructions based on Struthio and 

Alligator are equally preferred, such that the two alternative reconstruction schemes are 

presented here as the maximal and minimal estimates of proximal femoral articular cartilage 

thickness in Dromomeron. 

The craniomedially deflected proximal femur of lagerpetids and Marasuchus allows the 

femoral head to insert deep into the acetabulum during femoral retraction. Because the 

metaphyseal shelf is slightly expanded on the craniolateral femoral metaphysis, the fibrocartilage 

sleeve in this region may buttress the hyaline cartilage core on the femoral head region against 

axial compression and translational shear during femoral protraction and retraction. The laterally 

expanded supraacetabular rim indicates that the pliant, fibrous acetabular labrum is able to 

undergo maximal contact with the entire proximal femur when the femur is adducted and 

retracted. However, because basal dinosauromorphs possess a hyaline cartilage-covered, osseous 

inner acetabular wall, load-bearing articulation between the proximal femur and the inner 

acetabular wall is still potentially possible during femoral abduction. Overall, these results 

suggest that basal dinosauromorphs were able to adopt a more abducted femoral posture than 

dinosaurs during locomotion. 

Silesaurids retain basal dinosauromorph morphology in the acetabulum but possess a 

lepidosaur-like proximal femoral epiphysis, in which a thick, highly convex cartilage cap inserts 

onto the proximal femoral growth plate via a cartilage cone. The subchondral surface of 

silesaurid proximal femora is terminally planar and possesses an angled junction with the 



femoral head (Fig. 6b, 7b). A deeply excavated cartilage cone trough spans the capital-

trochanteric axis of the proximal growth plate, indicating the presence of a well-developed 

cartilage cone. The trough is present in all silesaurid femora studied and has even been reported 

in a particularly large-bodied individual as well (Barrett et al., 2015), indicating that silesaurids 

retain the cartilage cone in postnatal juveniles and adults. The silesaurid epiphyseal morphology 

is unlike either extant crocodylians or birds, because both clades retain the cartilage cone only as 

neonates. Instead, the silesaurid growth plate indicates a lepidosaur-like epiphyseal cartilage 

shape (Haines, 1942). In particular, post-natal juvenile lepidosaurs retain a prominent cartilage 

cone on the metaphyseal surface of the cartilage cap (Buffrénil et al., 2004). The articular surface 

of the cartilage cap on the proximal femur is convex in lepidosaurs, allowing congruent 

articulation with the acetabulum. Since silesaurids possess similar subchondral morphology to 

lepidosaurs, we reconstruct the epiphyseal cartilage shape of silesaurids based on that of extant 

lepidosaurs, in which a semi-ellipsoid, convex epiphyseal cartilage cap inserts into the 

metaphysis via a cartilage cone. We reconstruct the apex of the silesaurid cartilage cap as 

situated capital relative to the midpoint of the proximal femur in lateral view (Fig. 8a), because 

the well-developed metaphyseal shelf on the capital region indicates that prominent 

fibrocartilage sleeve supported thicker hyaline cartilage on the femoral head (Fig. 6b, 7b). 

Thickness of the proximal epiphyseal cartilage of a 137 mm Asilisaurus femur is estimated as 

13.6 mm, half the capital-trochanteric length of the proximal growth plate. 

It is not known if silesaurids calcified the hyaline cartilage core like lepidosaurs do 

(Haines, 1941). Calcification centers have never been described at the ends of silesaurid limb 

bones. It is possible that remnants of calcification centers have been removed from the ends of 

silesaurid long bones via diagenesis or preparation, but it is more likely that silesaurids retain 



uncalcified epiphyseal cartilage caps throughout life, as in other archosauriformes. In support of 

the latter hypothesis, silesaurids possess an expanded metaphyseal collar on the proximal femur. 

This indicates that silesaurs possess a prominent fibrocartilage sleeve on the medial periphery of 

the hyaline cartilage core (Fig. 8a). In contrast, lepidosaurs possess only a modest fibrocartilage 

sleeve on the periphery of the epiphyseal calcification center and lack an expanded metaphyseal 

shelf. The fibrocartilage sleeve has been inferred to function as mechanical support for the 

epiphyseal hyaline cartilage core in extant archosaurs (Tsai and Holliday, 2015). These lines of 

evidence indicate that, although silesaurids possess a cartilage cone and a lepidosaur-like 

epiphyseal cartilage cap, they nevertheless maintain a hyaline, uncalcified cartilage core, 

surrounded by an extensive fibrocartilage sleeve. 

Like basal dinosauromorphs, silesaurids are capable of greater range of hip abduction and 

axial rotation than inferred by previous studies (Dzik, 2003). Silesaurids retain a laterally 

expanded supraacetabular rim, suggesting that the epiphyseal cartilage articulates with the 

supraacetabular labrum dorsally in parasagittal locomotor posture (Fig. 8a). However, an 

abducted femoral posture remains mechanically possible because the pubofemoral and 

ischiofemoral ligaments are capsular in origin. Overall, results of this study support previous 

inferences that basal dinosauromorphs were able to assume adducted hind limb postures (Dzik, 

2003; Nesbitt et al., 2009; 2010) but retain the capacity for mediolateral and axial femoral 

rotation. Results of this study provide the means of hip joint articulation for further in silico 

modeling of hip joint postural mechanics using quantitative techniques (e.g., muscle moment 

arm analysis, Bates and Schachner, 2011). 

 Hip joint evolution in basal dinosaurs is characterized by independent reduction and 

eventual loss of the cartilage cone-metaphyseal trough articulation, as well as independent 



modifications of the two ventral capsular ligaments into the ligamentum capitis femoris. 

Although the cartilage cone is ubiquitously present among silesaurids, it is variably present in 

basal theropods, sauropodomorphs, and ornithischians. Among basal dinosaurs, the cartilage 

cone is frequently present post-neonatal individual, though shallow or absent in large conspecific 

adults. The presence of cartilage cones in locomotor patent subadults indicate that basal 

dinosaurs retain similar function of the epiphyseal hyaline cartilage as non-dinosaurian 

dinosauriformes, and were able to use uncalcified hyaline cartilage as load bearing tissues on par 

with subchondral bones. 

Early evolution of the graviportal hip joint of Sauropodomorpha 

Hip joint evolution in basal sauropodomorphs is characterized by few concerted 

transitions in both the femur and the acetabulum, followed by subsequent stasis in soft tissue 

anatomy throughout Sauropoda (Fig. 9). Key characteristics of the sauropod hip joint include a 

highly cartilaginous, medially deflected femoral head, a fully perforated acetabulum, a reduced 

supraacetabular rim, and a cranially concave ischial peduncle of the ilium. These key 

characteristics of the sauropod hip joint appeared within a relatively short time (~220-190 MYA) 

during the early evolution of sauropodomorphs. In particular, small basal sauropodomorphs 

possess markedly different growth plate morphology compared to their larger relatives, 

suggesting an association between epiphyseal soft tissue and the evolution of gigantism in the 

sauropod lineage. Basal sauropodomorphs retain a shallow indentation on the proximal femoral 

growth plate, homologous with the cartilage cone trough in silesaurs and basal theropods. The 

shallowness of this trough indicates that the cartilage cone is not as prominent in 

sauropodomorphs as it is in silesaurids. Although a shallow cartilage cone is present in some 

individual of Plateosaurus (absent in SMNS F 14-91294, Fig. 7l), it is unequivocally lost in 



Anchisauria. The loss of the cartilage cones in derived sauropodomorphs coincides with the 

acquisition of highly rugose growth plate surfaces on the proximal femur and indicates a major 

transition in joint loading in the sauropod lineage. Using the cartilage cap reconstruction of 

juvenile Struthio, a 590 mm Plateosaurus femur would possess an 18.6 (±4.9) mm thick 

cartilage cap on its proximal end. In contrast, cartilage reconstruction based on Alligator 

estimates a 18.9 (±6.6) mm cartilage cap. The two alternative reconstruction schemes are 

presented here as the minimal- and maximal estimates of proximal femoral articular cartilage 

thickness in Plateosaurus. Large-bodied sauropodomorphs possess absolutely thicker layers of 

epiphyseal cartilage than silesaurids in both minimal and maximal estimates. Given the marked 

disparity in body size between large sauropodomorphs and silesaurids, the cartilage cap of large 

sauropodomorphs is expected to experience much greater absolute magnitudes of compressive 

and shear forces during stance and locomotion. Compared to a cone-trough articulation, an 

irregularly rugose articulation is hypothesized provide greater traction between the hyaline 

cartilage and the subchondral growth plate, thus prevent slippage and avulsion of the thick 

cartilage cap (Carter, 1987; Carter et al., 1998) 

The supraacetabular rim is reduced in all but the most basal sauropodomorphs (Fig. 3b, c, 

d). The reduction of the supraacetabular rim coincides with medial deflection of the femoral 

head, as well as the evolution of thick hyaline cartilage on the femoral head. In sauropods, the 

mediolateral depth of the supraacetabulum is generally similar to the capital-trochanteric extent 

of the highly convoluted rugosities on the femoral head growth plate. The congruence in 

osteological correlates suggest that the supraacetabulum articulates solely with the thick 

epiphyseal cartilage layer of the femoral head when the femur is held vertically, and that the 



femoral neck, though still possessing a hyaline cartilage growth plate surface, does not articulate 

with the supraacetabulum during vertical femoral posture. 

Basal sauropodomorphs possess an incompletely perforated acetabulum (Fig. 3b), 

indicative of capsular ventral joint ligaments (Fig. 8b).  However, incipient perforations of the 

acetabulum in basal sauropodomorphs indicate that the ventral joint ligament can enter the 

acetabulum during femoral adduction, without the risk of compression between the articular 

surfaces. The inner acetabular rim is particularly expanded in sauropods, such that the inner 

rim’s circumference approaches that of the outer rim. This results in a shallow, dish-shaped 

acetabular fossa. The inner acetabular rim is covered by a ligamentous acetabular membrane, 

forming a pliant surface against capital extant of the femoral head.  

As in other diapsids, sauropodomorphs are inferred to possess a common femoral 

insertion for the pubofemoral and ischiofemoral ligament on the fovea capitis. The fovea capitis 

located entirely on the epiphyseal hyaline cartilage and does not leave a pit on the subchondral 

surface. Nevertheless, the location of the fovea can be estimated in basal sauropodomorphs as the 

subchondral surface between the anatomical femoral head and the posteromedial tuber. The 

ligamentum capitis femoris (i.e., the conjoined portion of the two ventral joint ligaments) is 

inferred to be relatively shorter in sauropodomorphs more basal than Mussaurus, because the 

ischiofemoral ligament’s passage can be traced using the ischiofemoral ligament sulcus on the 

caudomedial surface of the femoral neck (e.g., Plateosaurus, Fig. 7c).  

Evolution of the obligate parasagittal hip joint in basal Theropoda 

 The hip joint evolution of theropods is best characterized by differential combinations of 

character state transitions, which suggest unique locomotor adaptations in each clade. The basal 

theropod hip joint morphology (e.g., Coelophysis, Fig. 8c) indicates a highly constrained 



locomotor posture in which the femur cannot undergo axial rotation but is instead “locked” into 

protraction and retraction. The basal theropod morphology is termed the “obligate parasagittal” 

hip joint.  

 Basal theropods retained the cartilage cone trough on the subchondral growth plate of the 

proximal femur, although the trough is considerably shallower and less distinct compared to 

those of silesaurids. The shallowness of the trough indicates a reduction in the cartilage cone’s 

insertion into the metaphysis. Reduction of the cartilage cone in theropods is not associated with 

a gain in growth plate rugosities, as the case of sauropodomorphs. The smooth growth plate 

texture indicates that basal theropods possess relatively thin epiphyseal cartilage compared to 

sauropodomorphs. Using the cartilage cap reconstruction of adult Struthio, a 240 mm 

Coelophysis femur would possess a cartilage cap 5.6 ± 2.0 mm in thickness on its proximal end. 

In contrast, cartilage reconstruction based on Alligator reconstructs a 7.6 ± 2.0 mm cartilage cap. 

The two alternative reconstruction schemes are presented here as the minimal- and maximal 

estimates of proximal femoral articular cartilage thickness in Coelophysis. The articular surface 

on the proximal femur is reconstructed here as a convex surface, in which the reconstructed 

epiphyseal cartilage fills in the cartilage cone trough, because the proximal femur of taxa 

bracketing basal theropods (basal dinosauromorphs and tetanurans) possess convex subchondral 

and articular surfaces. 

In basal theropods, the loss of femoral axial rotation is facilitated by both musculoskeletal 

transitions as well as shifting roles of ancestral hip joint soft tissues. The femoral head inserts 

into the acetabulum craniomedially and is confined laterally by the ventrolaterally oriented 

supraacetabular rim (Fig. 8c). This morphology indicates that the iliofemoral ligament no longer 

functions to constrain femoral lateral rotation as in basal dinosauromorphs. Instead, the 



iliofemoral ligament stabilizes the proximal femur laterally during hip protraction and retraction. 

Moreover, the proximal femur of basal theropods possesses a distinct metaphyseal collar, which 

forms the ventral half of the capital and lateral portion of the femoral head. This morphology 

indicates that the fibrocartilage sleeve attaches extensively to the metaphysis, such that the entire 

ventral half of the femoral head consists of a fibrocartilaginous articular surface. This capital 

expansion of the fibrocartilage sleeve is inferred to prevent avulsion of the hyaline cartilage core 

from the subchondral growth plate of the femoral head during femoral protraction and retraction. 

Additionally, whereas the hyaline cartilage on the apical proximal femur articulates with the 

labrum on the acetabular “ceiling”, the fibrocartilage sleeve on the trochanteric region articulates 

with the unexpanded, craniolaterally facing antitrochanter. The craniomedially deflected femoral 

head allows the distal condyles to remain perpendicular to the craniocaudal axis of the animal 

during femoral protraction and retraction. Lastly, the amount of femoral head displacement is 

inferred to be constrained by the intrinsic joint ligaments. We reconstructed the ventral joint 

ligaments within the hip joint capsule based on the presence of a fully perforated inner acetabular 

wall. In particular, the ischiofemoral ligament is inferred to function as an internal constraint to 

femoral head displacement during femoral retraction. During femoral retraction, the fovea capitis 

is displaced craniad relative to the ischium, suggesting that the ischiofemoral ligament is 

stretched during this posture. Overall, our results show that transitions in hip joint soft tissue 

morphology in basal theropods facilitated the evolution of a obligate parasagittal hip posture, as 

inferred by Carrano (2000). 

CONCLUSION 

The evolutionary history of Dinosauromorpha is characterized by multiple, iterative 

convergences and divergences in hip joint anatomy. Both theropods and sauropodomorphs 



independently evolved intrinsic hip joint ligaments, which constrained femoral head movement 

during hip excursion. Moreover, theropods and sauropodomorphs independently modified the 

fibrocartilage sleeve to provide mechanical support for thick layer of femoral hyaline cartilage. 

Among saurischians, sauropodomorphs underwent swift, concerted evolutionary transitions in 

femoral and acetabular soft tissues within the basal lineage (“prosauropods”), culminating in the 

highly conserved sauropod morphology. The sauropod hip joint is characterized by a highly 

cartilaginous femoral head and a reduction in the femoral neck-antitrochanter articulation. In 

contrast, basal theropods evolved a highly constrained femoral posture in which abduction and 

axial rotation is greatly reduced, before undergoing several clade-specific combinations of 

character transitions among major radiations. The theropod hip joint is characterized by a thinner 

layer of hyaline cartilage on the femoral head and the retention of femoral neck-antitrochanter 

articulation. These data indicate highly divergent locomotor adaptations within 

Dinosauromorpha, worthy of additional phylogenetic and functional analyses. 
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Table 1. Anatomical abbreviations. 

 
att antitrochanter l. ilf iliofemoral ligament 

brs bursa l. isf ischiofemoral 

ligament 

cc calcified cartilage l. pf pubofemoral ligament 

cd. med medial condyle   

cd. lat lateral condyle m. istr m. 

ischiotrochantericus 

c. mp metaphyseal collar mb. act acetabular membrane 

cn cartilage cone pb pubis 

fm femur ppi pubic peduncle of 

ilium 

fov fovea capitis pcf peripheral collagen 

fiber 

fc fibrocartilage pd. pb pubic peduncle of 

ilium 

gp growth plate pd. is ischial peduncle of 

ilium 

hc hyaline cartilage   

hcc. att Antitrochanter hyaline 

cartilage core 

r. cp capital region 

il ilium r. tr trochanteric region 

is ischium s. a articular surface 

lab acetabular labrum sc. isf ischiofemoral 

ligament sulcus 

l. cf ligamentum capitis 

femoris 

tr. cn cartilage cone trough 



  

Table 2. Osteological correlates of hip joint soft tissues.  

 

Soft tissue structure Osteological correlates 

Iliofemoral ligament: Origin Craniodorsal acetabular rim (pubic peduncle of ilium). 

Iliofemoral ligament: Insertion Craniolateral metaphyseal collar of the proximal femur. 

Acetabular labrum Ventral side of supraacetabular rim (cranial portion of acetabular roof). 

Acetabular membrane Unossified inner acetabular wall (the inner acetabular foramen). 

Antitrochanter fibrocartilage 
Laterally oriented surface of the bony antitrochanter; surface of 

antitrochanter hyaline cartilage core. 

Antitrochanter hyaline cartilage core Growth plate surfaces of the ilio- and ischial peduncles (archosaur). 

Pubofemoral ligament: Origin Cranioventral (pubic) rim of the inner acetabular foramen. 

Ischiofemoral ligament: Origin Caudoventral (ischial) rim of the inner acetabular foramen. 

Ischiofemoral ligament: Passage Ischiofemoral ligament sulcus on the proximal femoral metaphysis. 

Ligamentum capitis femoris: Insertion  

(confluence of pubofemoral and ischiofemoral 

ligaments) 

Cranial surface of the posteromedial tuber (plesiomorphic); flat or 

concave surfaces on the femoral head (Aves and some coelurosaurs). 

Expanded metaphyseal attachment for 

fibrocartilage sleeve 

Striated, elevated cortical bone surface on the metaphysis. 

Hyaline cartilage core 
Calcified cartilage-covered growth plate overlying subchondral 

trabecular bone. 

Thick layer of hyaline cartilage Irregularly rugose growth plate surface. 

Extension of the cartilage cone into the 

metaphyseal growth plate 

Longitudinal groove on the proximal femoral growth plate surface. 

Synovial bursa 
Exposed patch of metaphyseal trabecular bone surrounded by cortical 

bone. 

 



Figure 1. A. 3D surface model of a Liliensternus right pelvis (MB.R 2175, all elements except 

pubis are mirrored) in lateral view. B. Schematic representation of acetabular soft tissues (black 

dotted inset in A), excluding joint ligaments. C. 3D surface model of the associated Liliensternus 

right femur (mirrored) in cranial, medial, and proximal views. Relative orientation between the 

femoral head-greater trochanter axis (green labels) and the mediolateral axis of the distal 

condyles (red labels) determines the orthogonal reference planes used to describe anatomical 

structures, shown as dotted lines in proximal views of each femur. The cranio-trochanteric plane 

in represented in green, mediolateral plane in red, craniocaudal plane in blue. D. Schematic 

representation of proximal femoral soft tissues (black dotted inset in C), excluding joint 

ligaments. Tissue nomenclature and color schemes are labeled according to homology inferences 

in Tsai and Holliday (2015). 



 

Figure 2. Simplified topologies of phylogenetic trees used in this study. A. The consensus 

phylogenetic tree based on published studies (Archosauromorpha, Ezcurra et al., 2014; 

Archosauriformes, Brusatte et al., 2010a; Nesbitt, 2011; Dinosauromorpha, Langer et al., 2013; 

Sauropodomorpha, Wilson, 2005; Martínez and Alcober, 2009; Theropoda, Carrano et al., 2012; 

Paraves, Hartman et al., 2005; Turner et al., 2012; Xu et al., 2010; Aves, Clarke et al., 2005; 

Erickson et al., 2006; Brown et al., 2008; Phillips et al., 2010). B. Alternate placement of 

Silesauridae as stem ornithischians (Langer and Ferigolo, 2013). C. Alternate placement of 

Herrerasauridae as the sister taxon to Theropoda + Sauropodomorpha (Novas et al., 2010). D. 

Alternate placement of Eoraptor as a basal theropod, rather than as a basal sauropodomorph 

(Sues et al., 2011). E. Alternate placement of Archaeopteryx as a stem-deinonychosaur, rather 

than as the basal-most avialan (Xu et al., 2011; Godefroit et al., 2013). 



 

Figure 3. Osteological correlates of dinosauromorph acetabulae in left lateral view. A. 

Asilisaurus (NMT RB 159). Pubis and ischium mirrored from contralateral elements. Scale is 

12.3 mm. B. Panphagia (PVSJ 874). Scale is 12.8 mm C. Plateosaurus (GPIT 1), scale is 80 

mm. D. Diplodocus (CM94). Ischium mirrored from the contralateral element. Scale is 200 mm. 

E. Herrerasaurus (MCZ 438). Scale is 23.8 mm. F. Piatnitzkysaurus (MACN CH 895). Ischium 

mirrored from contralateral element. Scale is 70 mm. G. Allosaurus (UMNH VP 2560). Scale is 

127 mm.  H. Khaan (IGM 100-1002). Articulated pelvis and femur mirrored from contralateral 

elements. Scale is 29 mm. I. Utahraptor (BYU 7510-10073). Ilium mirrored from contralateral 

element. Scale is 50 mm.  



 

Figure 4. Osteological correlates of the acetabular labrum and antitrochanter. All pelves shown 

in left ventral view. A. Sarahsaurus (TMM 43646). Scale is 29 mm B. Apatosaurus (YPM 

1987). Scale is 135 mm. C. Dilophosaurus (TMM 43246). Scale is 25 mm. D. Allosaurus 

(UMNH VP 8119). Ilium mirrored from the contralateral element. Scale is 35 mm. E. 

Tyrannosaurus (FMNH PR 2081). Scale is 126 mm. F. Bambiraptor (FIP 001). Scale is 8.4 mm.  



 

Figure 5. Osteological correlates of the antitrochanteric cartilages. All pelves shown in left 

lateral view. Soft tissue attachments are preceded by an asterisk (*). A. Apatosaurus (3D model 

of FMNH 25112, photograph of CM 83). Scale is 260 mm. B. Coelophysoidae (Reconstructed 

based on 3D surface models of Coelophysis UCMP 129618 and Liliensternus M.Br. 2175). Scale 

is 23 mm. C. Tyrannosaurus (FMNH PR 2081). Scale is 173 mm. D. Falcarius (UMNH VP 

12368 ilium, 12375 ischium, 12539 pubis). Scale is 40 mm. 



 

Figure 6. Osteological correlates of the proximal femur in lateral/cranial (A-H) and capital (I-P) 

views. Soft tissue attachments are preceded by an asterisk (*). A. Dromomeron (GR 218). Scale 

is 6.3 mm. B. Silesaurus (PEFO 34343, mirrored). Scale is 15.1 mm. C. Plateosaurus (SMNS F 

14-91294). Scale is 60 mm. D. Alamosaurus (TMM 41541). Scale is 163.1 mm. E. Coelophysis 

(UCMP 129618). Scale is 20.3 mm. F. Allosaurus (UMNH VP 8119). Scale is 79.4 mm. G. 

Falcarius (UMNH VP 12361) Scale is 26.0 mm. H. Deinonychus (MCZ 4371). Scale is 27.7 

mm. I. Eucoelophysis (GR 195, mirrored). Scale is 13.6 mm. J. Plateosaurus (SMNS F 14-

91294). Scale is 60 mm. K. Diplodocus (DMNH 462). Scale is 107.1 mm. L. Liliensternus 

(MB.R. 2175, mirrored). Scale is 28.8 mm. M. Piatnitzkysaurus (MACN CH 895). Scale is 39.6 

mm. N. Coelurus (YPM 2010). Scale is 10.8 mm. O. Anzu (CM 78000). Scale is 41.4 mm. P. 

Deinonychus (MCZ 4371). Scale is 27.7 mm. Foveae capitis of Eucoelophysis, Plateosaurus, 

and Diplodocus are obscured by the thick hyaline cartilages inferred for these taxa. 



 

Figure 7. Osteological correlates of the proximal femur in medial/caudal (A-H) and proximal (I-

P) views. Soft tissue attachments are preceded by asterisk (*). A. Dromomeron (GR 218). Scale 

is 6.3 mm. B. Asilisaurus (NMT RB159, mirrored). Scale is 10.9 mm. C. Plateosaurus (SMNS F 

14-91294). Scale is 60 mm. D. Camarasaurus (YPM 4625, mirrored). Scale is 157.0 mm. E. 

Herrerasaurus (PVSJ 373). Scale is 24.7 mm. F. Tyrannosaurus (FMNH PR 2081). Scale is 

155.0 mm. G. Ornithomimus (RAM 6794). Scale is 23.9 mm. H. Anzu (CM 78000). Scale is 

38.8 mm. I. Velociraptor (IGM 100/986, modified from Norell and Makovicky, 1999). Scale is 

13.4 mm. J. Dromomeron (GR 218). Scale is 6.3 mm. K. Silesaurus (PEFO 34343, mirrored). 

Scale is 12.6mm. L. Plateosaurus (SMNS F 14-91294). Scale is 60 mm. M. Camarasaurus 

(DNM 4514, mirrored) Scale is 162.4 mm. N. Staurikosaurus (MCZ 1669). Scale is 13.2 mm. O. 

Ceratosaurus (UMNH VP 5728). Scale is 65.1 mm. P. Coelurus (YPM 2010). Scale is 14.9 mm. 

Q. Anzu (CM 78000). Scale is 38.8 mm. Foveae capitis of Asilisaurus, Plateosaurus, and 

Camarasaurus are not shown due to the thick hyaline cartilage attachment in these taxa. 



 

Figure 8. Hip joint soft tissue reconstructions of dinosauriformes. All elements represent the left 

side. Acetabular sectional planes are marked by red dotted line. Femur is shown articulated but 

not sectioned. Tissues are labeled and color-coded based on inferred homology in Tsai and 

Holliday (2015). Cut surfaces of bones and ligaments are marked by † before the labels. A. 

Asilisaurus. Caudal section is shown in cranial view. B. Plateosaurus. Acetabular membrane is 

removed in medial view. Femur is shown articulated with the pelvis in medial view. C. 

Coelophysoidae, reconstructed based on Coelophysis and Liliensternus. Magnified region of the 

proximal femur is indicated by red dotted box. Acetabular membrane is removed in medial view. 

Femur is shown articulated with the pelvis in medial view. Cranial section is shown in caudal 

view.



 

Figure 9. Evolutionary history of the hip joint characters in the dinosauromorph stem lineage 

based on the consensus phylogenetic tree (Fig. 2a). All character states are inferred to be absent 

in outgroup dinosauromorphs, here represented by Lagerpeton. Presence of character states are 

represented by +. Absence of character states are represented by -. Ambiguous character states 

are represented by ? and are highlighted in gray. Silhouettes of taxa depicted here are provided 

by S. Hartman, J. Headden, and N. Tamura. 


