289 research outputs found

    The Footprint of F-theory at the LHC

    Full text link
    Recent work has shown that compactifications of F-theory provide a potentially attractive phenomenological scenario. The low energy characteristics of F-theory GUTs consist of a deformation away from a minimal gauge mediation scenario with a high messenger scale. The soft scalar masses of the theory are all shifted by a stringy effect which survives to low energies. This effect can range from 0 GeV up to ~ 500 GeV. In this paper we study potential collider signatures of F-theory GUTs, focussing in particular on ways to distinguish this class of models from other theories with an MSSM spectrum. To accomplish this, we have adapted the general footprint method developed recently for distinguishing broad classes of string vacua to the specific case of F-theory GUTs. We show that with only 5 fb^(-1) of simulated LHC data, it is possible to distinguish many mSUGRA models and low messenger scale gauge mediation models from F-theory GUTs. Moreover, we find that at 5 fb^(-1), the stringy deformation away from minimal gauge mediation produces observable consequences which can also be detected to a level of order ~ +/- 80 GeV. In this way, it is possible to distinguish between models with a large and small stringy deformation. At 50 fb^(-1), this improves to ~ +/- 10 GeV.Comment: 85 pages, 37 figure

    A model independent spin analysis of fundamental particles using azimuthal asymmetries

    Full text link
    Exploiting the azimuthal angle dependence of the density matrices we construct observables that directly measure the spin of a heavy unstable particle. A novelty of the approach is that the analysis of the azimuthal angle dependence in a frame other than the usual helicity frame offers an independent cross-check on the extraction of the spin. Moreover, in some instances when the transverse polarisation tensor of highest rank is vanishing, for an accidental or dynamical reason, the standard azimuthal asymmetries vanish and would lead to a measurement with a wrong spin assignment. In a frame such as the one we construct, the correct spin assignment would however still be possible. The method gives direct information about the spin of the particle under consideration and the same event sample can be used to identify the spins of each particle in a decay chain. A drawback of the method is that it is instrumental only when the momenta of the test particle can be reconstructed. However we hope that it might still be of use in situations with only partial reconstruction. We also derive the conditions on the production and decay mechanisms for the spins, and hence the polarisations, to be measured at a collider experiment. As an example for the use of the method we consider the simultaneous reconstruction, at the partonic level, of the spin of both the top and the WW in top pair production in e+ee^+ e^- in the semi-leptonic channel.Comment: 42 pages, 7 figures, 4 table

    Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy

    Full text link
    We revisit the method of kinematical endpoints for particle mass determination, applied to the popular SUSY decay chain squark -> neutralino -> slepton -> LSP. We analyze the uniqueness of the solutions for the mass spectrum in terms of the measured endpoints in the observable invariant mass distributions. We provide simple analytical inversion formulas for the masses in terms of the measured endpoints. We show that in a sizable portion of the SUSY mass parameter space the solutions always suffer from a two-fold ambiguity, due to the fact that the original relations between the masses and the endpoints are piecewise-defined functions. The ambiguity persists even in the ideal case of a perfect detector and infinite statistics. We delineate the corresponding dangerous regions of parameter space and identify the sets of "twin" mass spectra. In order to resolve the ambiguity, we propose a generalization of the endpoint method, from single-variable distributions to two-variable distributions. In particular, we study analytically the boundaries of the (m_{jl(lo)}, m_{jl(hi)}) and (m_{ll}, m_{jll}) distributions and prove that their shapes are in principle sufficient to resolve the ambiguity in the mass determination. We identify several additional independent measurements which can be obtained from the boundary lines of these bivariate distributions. The purely kinematical nature of our method makes it generally applicable to any model that exhibits a SUSY-like cascade decay.Comment: 47 pages, 19 figure

    Precise reconstruction of sparticle masses without ambiguities

    Full text link
    We critically reexamine the standard applications of the method of kinematical endpoints for sparticle mass determination. We consider the typical decay chain in supersymmetry (SUSY) squark -> neutralino -> slepton -> LSP, which yields a jet j and two leptons ln and lf. The conventional approaches use the upper kinematical endpoints of the individual distributions m_{jll}, m_{jl(lo)} and m_{jl(hi)}, all three of which suffer from parameter space region ambiguities and may lead to multiple solutions for the SUSY mass spectrum. In contrast, we do not use m_{jll}, m_{jl(lo)} and m_{jl(hi)}, and instead propose a new set of (infinitely many) variables whose upper kinematic endpoints exhibit reduced sensitivity to the parameter space region. We then outline an alternative, much simplified procedure for obtaining the SUSY mass spectrum. In particular, we show that the four endpoints observed in the three distributions m^2_{ll}, m^2_{jln} U m^2_{jlf} and m^2_{jln}+m^2_{jlf} are sufficient to completely pin down the squark mass and the two neutralino masses, leaving only a discrete 2-fold ambiguity for the slepton mass. This remaining ambiguity can be easily resolved in a number of different ways: for example, by a single additional measurement of the kinematic endpoint of any one out of the many remaining 1-dimensional distributions at our disposal, or by exploring the correlations in the 2-dimensional distribution of m^2_{jln} U m^2_{jlf} versus m^2_{ll}. We illustrate our method with two examples: the LM1 and LM6 CMS study points. An additional advantage of our method is the expected improvement in the accuracy of the SUSY mass determination, due to the multitude and variety of available measurements.Comment: 37 pages, added a new figure in the Appendix, published versio

    Clusters of galaxies: setting the stage

    Get PDF
    Clusters of galaxies are self-gravitating systems of mass ~10^14-10^15 Msun. They consist of dark matter (~80 %), hot diffuse intracluster plasma (< 20 %) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. In the current bottom-up scenario for the formation of cosmic structure, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ~50 % of this diffuse component has temperature ~0.01-1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.Comment: 20 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 2; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe
    corecore