88 research outputs found

    Knee disorders among carpenters in the St. Louis area

    Get PDF

    A kinematic model of the human hand to evaluate its prehensile capabilities

    Full text link
    A kinematic model has been developed for simulation and prediction of the prehensile capabilities of the human hand. The kinematic skeleton of the hand is characterized by ideal joints and simple segments. Finger-joint angulation is characterized by yaw (abduction-adduction), pitch (flexion-extension) and roll (axial rotation) angles. The model is based on an algorithm that determines contact between two ellipsoids, which are used to approximate the geometry of the cutaneous surface of the hand segments. The model predicts the hand posture (joint angles) for power grasp of ellipsoidal objects by `wrapping' the fingers around the object. Algorithms for two grip types are included: (1) a transverse volar grasp, which has the thumb abducted for added power; and (2) a diagonal volar grasp, which has the thumb adducted for an element of precision. Coefficients for estimating anthropometric parameters from hand length and breadth are incorporated in the model. Graphics procedures are included for visual display of the model. In an effort to validate the predictive capabilities of the model, joint angles were measured on six subjects grasping circular cylinders of various diameters and these measured joint angles were compared with angles predicted by the model. Sensitivity of the model to the various input parameters was also determined. On an average, the model predicted joint flexion angles that were 5.3% or 2.8[deg] +/- 12.2[deg] larger than the measured angles. Good agreement was found for the MCP and PIP joints, but results for DIP were more variable because of its dependence on the predictions for the proximal joints.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30224/1/0000616.pd

    Comparison of musculoskeletal disorder health claims between construction floor layers and a general working population

    Get PDF
    OBJECTIVES: Compare rates of medical insurance claims for musculoskeletal disorders (MSD) between workers in a construction trade and a general worker population to determine if higher physical exposures in construction lead to higher rates of claims on personal medical insurance. METHODS: Health insurance claims between 2006 and 2010 from floor layers were frequency matched by age, gender, eligibility time, and geographic location to claims from insured workers in general industry obtained from MarketScan. We extracted MSD claims and dates of service from six regions of the body: neck, low back, knee, lower extremity, shoulder, and distal arm, and evaluated differences in claim rates. RESULTS: Fifty-one percent of floor layers (n=1,475) experienced musculoskeletal claims compared to 39% of MarketScan members (p<0.001). Claim rates were higher for floor layers across all body regions with nearly double the rate ratios for the knee and neck regions (RR: 2.10 and 2.07). The excess risk was greatest for the neck and low back regions; younger workers had disproportionately higher rates in the knee, neck, low back, and distal arm. A larger proportion of floor layers (22%) filed MSD claims in more than one body region compared to general workers (10%; p<0.001). CONCLUSIONS: Floor layers have markedly higher rates of MSD claims compared to a general worker population, suggesting shifting of medical costs for work-related MSD to personal health insurance. The occurrence of disorders in multiple body regions and among the youngest workers highlights the need for improved work methods and tools for construction workers

    Exploring physical exposures and identifying high-risk work tasks within the floor layer trade

    Get PDF
    INTRODUCTION: Floor layers have high rates of musculoskeletal disorders yet few studies have examined their work exposures. This study used observational methods to describe physical exposures within floor laying tasks. METHODS: We analyzed 45 videos from 32 floor layers using Multimedia-Video Task Analysis software to determine the time in task, forces, postures, and repetitive hand movements for installation of four common flooring materials. We used the WISHA checklists to define exposure thresholds. RESULTS: Most workers (91%) met the caution threshold for one or more exposures. Workers showed high exposures in multiple body parts with variability in exposures across tasks and for different materials. Prolonged exposures were seen for kneeling, poor neck and low back postures, and intermittent but frequent hand grip forces. CONCLUSIONS: Floor layers experience prolonged awkward postures and high force physical exposures in multiple body parts, which probably contribute to their high rates of musculoskeletal disorders

    A Multi-Institutional Partnership Catalyzing the Commercialization of Medical Devices and Biotechnology Products.

    Get PDF
    The commercialization of medical devices and biotechnology products is characterized by high failure rates and long development lead times particularly among start-up enterprises. To increase the success rate of these high-risk ventures, the University of Massachusetts Lowell (UML) and University of Massachusetts Medical School (UMMS) partnered to create key academic support centers with programs to accelerate entrepreneurship and innovation in this industry. In 2008, UML and UMMS founded the Massachusetts Medical Device Development Center (M2D2), which is a business and technology incubator that provides business planning, product prototyping, laboratory services, access to clinical testing, and ecosystem networking to medical device and biotech startup firms. M2D2 has three physical locations that encompass approximately 40,000 square feet. Recently, M2D2 leveraged these resources to expand into new areas such as health security, point of care technologies for heart, lung, blood, and sleep disorders, and rapid diagnostics to detect SARS-CoV-2. Since its inception, M2D2 has vetted approximately 260 medical device and biotech start-up companies for inclusion in its programs and provided active support to more than 80 firms. This manuscript describes how two UMass campuses leveraged institutional, state, and Federal resources to create a thriving entrepreneurial environment for medical device and biotech companies

    Rac1 Regulates the NLRP3 Inflammasome Which Mediates IL-1beta Production in Chlamydophila pneumoniae Infected Human Mononuclear Cells

    Get PDF
    Chlamydophila pneumoniae causes acute respiratory tract infections and has been associated with development of asthma and atherosclerosis. The production of IL-1β, a key mediator of acute and chronic inflammation, is regulated on a transcriptional level and additionally on a posttranslational level by inflammasomes. In the present study we show that C. pneumoniae-infected human mononuclear cells produce IL-1β protein depending on an inflammasome consisting of NLRP3, the adapter protein ASC and caspase-1. We further found that the small GTPase Rac1 is activated in C. pneumoniae-infected cells. Importantly, studies with specific inhibitors as well as siRNA show that Rac1 regulates inflammasome activation in C. pneumoniae-infected cells. In conclusion, C. pneumoniae infection of mononuclear cells stimulates IL-1β production dependent on a NLRP3 inflammasome-mediated processing of proIL-1β which is controlled by Rac1

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore