134 research outputs found

    Rapid design and manufacture tools in architecture

    Get PDF
    The continuing development of rapid prototyping technologies and the introduction of concept modelling technologies means that their use is expanding into a greater range of applications. The primary aim of this paper is to give the reader an overview of the current state of the art in layered manufacturing (LM) technology and its applicability in the field of architecture. The paper reports on the findings of a benchmarking study, conducted by the Rapid Design and Manufacturing (RDM) Group in Glasgow [G.J. Ryder, A. McGown, W. Ion, G. Green, D. Harrison, B. Wood, Rapid prototyping feasibility report, Rapid Prototyping Group, Glasgow School of Art, 1998.], which identified that the applicability of LM technologies in any application can be governed by a series of critical process and application specific issues. A further survey carried out by the RDM group investigated current model making practice, current 3D CAD use and current use of LM technologies within the field of architecture. The findings are then compared with the capabilities of LM technologies. Future research needs in this area are identified and briefly outlined

    Mitoxantrone, cisplatin, and methyl-glyoxal bis-guanylhydrazone chemotherapy for refractory malignant lymphoma: A Southwest Oncology Group phase II trial

    Full text link
    A phase II trial of combination chemotherapy with mitoxantrone, cisplatin, and methyl-glyoxal bix-guanylhydrazone (MGBG) was conducted in 32 patients with unfavorable histology malignant lymphoma. All patients had relapsed after only one prior chemotherapy regimen (CHOP — 56%; mBACOD — 28%). There were three complete and eight partial responses (overall response rate — 34%) among 32 eligible patients. The median duration of remission was 6.0 months. Severe granulocytopenia was common, with 19/32 patients (63%) suffering life-threatening, and 1/32 (3%) suffering fatal, granulocytopenia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45311/1/10637_2004_Article_BF00170868.pd

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Crop Updates 2008 - Farming Systems

    Get PDF
    This session covers thirty nine papers from different authors: PLENARY 1. Developments in grain end use, Dr John de Majnik, New Grain Products, GRDC, Mr Paul Meibusch, New Farm Products and Services, GRDC, Mr Vince Logan, New Products Executive Manager, GRDC PRESENTATIONS 2. Global warming potential of wheat production in Western Australia: A life cycle assessment, Louise Barton1, Wahid Biswas2 and Daniel Carter3, 1School of Earth & Geographical Sciences, The University of Western Australia, 2Centre of Excellence in Cleaner Production, Division of Science and Engineering, Curtin University of Technology, 3Department of Agriculture and Food 3. How much fuel does your farm use for different farm operations? Nicolyn Short1, Jodie Bowling1, Glen Riethmuller1, James Fisher2 and Moin Salam1, 1Department of Agriculture and Food, 2Muresk Institute, Curtin University of Technology 4. Poor soil water storage and soil constraints are common in WA cropping soils, Stephen Davies, Jim Dixon, Dennis Van Gool and Alison Slade, Department of Agriculture and Food, Bob Gilkes, School of Earth and Geographical Sciences, University of Western Australia 5. Developing potential adaptations to climate change for low rainfall farming system using economic analysis tool. STEP, Megan Abrahams, Caroline Peek, Dennis Van Gool, Daniel Gardiner and Kari-Lee Falconer, Department of Agriculture and Food 6. What soil limitations affect the profitability of claying on non-wetting sandplain soils? David Hall1, Jeremy Lemon1, Harvey Jones1, Yvette Oliver2 and Tania Butler1, 1Department of Agriculture and Food, 2CSIRO Div Sustainable Ecology, Perth 7. Farming systems adapting to a variable climate; Two case studies, Kari-Lee Falconer, Department of Agriculture and Food 8. Importance of accounting for variation in crop yield potential when making fertiliser decisions, Michael Robertson and Yvette Oliver, CSIRO Sustainable Ecosystems, Floreat 9. Soil acidity is a widespread problem across the Avon River Basin, Stephen Carr1, Chris Gazey2, David York1 and Joel Andrew1, 1Precision SoilTech, 2Department of Agriculture and Food 10. The use of soil testing kits and ion-selective electrodes for the analysis of plant available nutrients in Western Australian soils, Michael Simeoni and Bob Gilkes School of Earth and Geographical Sciences, University of Western Australia 11. Redlegged earth mite resistance and integrated strategies for their control in Western Australia, Mangano G. Peter and Micic Svetlana, Department of Agriculture and Food 12. The economics of treating soil pH (liming), Chris Gazey, Steve Davies, Dave Gartner and Adam Clune, Department of Agriculture and Food, 13. Health benefits – A future differentiator for high value grains, Matthew Morell, Theme Leader, CSIRO Food Futures Flagship 14. Carbon in Sustralian cropping soils – We need to be realistic, Alan Umbers (M Rur Sc), GRDC/DAFF Sustainable Industries Initiative Project 15. AGWEST® Bartolo bladder clover (Trifolium spumosum) − a low cost annual pasture legume for the wheat/sheep zone, Angelo Loi, Brad Nutt and Clinton Revell, Department of Agriculture and Food 16. Maximising the value of point based soil sampling: Monitering trends in soil pH through time, Joel Andrew1, David York1, Stephen Carr1 and Chris Gazey2, 1Precision SoilTech, 2Department of Agriculture and Food 17. Improved crop root growth and productivity with deep ripping and deep placed lime, Stephen Davies1, Geoff Kew2*, Chris Gazey1, David Gartner1 and Adam Clune1, 1Department of Agriculture and Food, 2School of Earth and Geographical Sciences University of Western Australia, *Presenting author 18. The role of pastures in hosting Root Lesion Nematode (RLN, Pratylenchus neglectus), Vivien Vanstone, Ali Bhatti and Ming Pei You, Department of Agriculture and Food 19. To rip or not to rip. When does it pay? Imma Farre, Bill Bowden and Stephen Davies, Department of Agriculture and Food 20. Can yield be predicted from remotely sensed data, Henry Smolinski, Jane Speijers and John Bruce, Department of Agriculture and Food 21. Rotations for profit, David McCarthy and Gary Lang, Facey Group, Wickepin, WA 22. Rewriting rules for the new cropping economics, David Rees, Consultant, Albany 23. Reducing business risk in Binnu! – A case study, Rob Grima, Department of Agriculture and Food 24. Does improved ewe management offer grain farmers much extra profit? John Young, Farming Systems Analysis Service, Ross Kingwell, Department of Agriculture and Food, and UWA, Chris Oldham, Department of Agriculture and Food RESEARCH HIGHLIGHTS 25. Crop establishment and productivity with improved root zone drainage, Dr Derk Bakker, Research Officer, Department of Agriculture and Food 26. Will wheat production in Western Australia be more risky in the future? Imma Farre and Ian Foster, Department of Agriculture and Food PAPERS 27. Building farmers’ adaptive capacity to manage seasonal variability and climate change, David Beard, Department of Agriculture and Food 28. Precision placement increases crop phosphorus uptake under variable rainfall: Simulation studies, Wen Chen1 2, Richard Bell1, Bill Bowden2, Ross Brennan2, Art Diggle2 and Reg Lunt2, 1School of Environmental Science, Murdoch University, 2Department of Agriculture and Food 29. What is the role of grain legumes on red soil farms? Rob Grima, Department of Agriculture and Food 30. Fertiliser placement influences plant growth and seed yield of grain crops at different locations of WA, Qifu Ma1, Zed Rengel1, Bill Bowden2, Ross Brennan2, Reg Lunt2 and Tim Hilder2, 1Soil Science & Plant Nutrition, University of Western Australia, 2Department of Agriculture and Food 31. A review of pest and disease occurrences for 2007, Peter Mangano and Dusty Severtson, Department of Agriculture and Food 32. Effect of stocking rates on grain yield and quality of wheat in Western Australia in 2007, Shahajahan Miyan, Sam Clune, Barb Sage and Tenielle Martin, Department of Agriculture and Food 33. Storing grain is not ‘set and forget’ management, Chris Newman, Department of Agriculture and Food 34. Improving understanding of soil plant available water capacity (PAWC): The WA soil water database (APSoil), Yvette Oliver, Neal Dalgliesh and Michael Robertson, CSIRO Sustainable Ecosystems 35. The impact of management decisions in drought on a low rainfall northern wheatbelt farm, Caroline Peek and Andrew Blake, Department of Agriculture and Food 37. Cullen – A native pasture legume shows promise for the low-medium rainfall cropping zone, Megan Ryan, Richard Bennett, Tim Colmer, Daniel Real, Jiayin Pang, Lori Kroiss, Dion Nicol and Tammy Edmonds-Tibbett, School of Plant Biology, The University of Western Australia and Future Farm Industries CRC 38. Climate risk management tools – useful, or just another gadget? Lisa Sherriff, Kari-Lee Falconer, Daniel Gardiner and Ron McTaggart Department of Agriculture and Food 39. Benefits of crop rotation for management of Root Lesion Nematode (RLN, Pratylenchus neglectus), Vivien Vanstone, Sean Kelly and Helen Hunter, Department of Agriculture and Foo

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore