32 research outputs found

    Sketches of She

    Get PDF
    Sketches of She is and interdisciplinary body of work that features the collaboration of various female artists.https://remix.berklee.edu/graduate-studies-global-jazz/1043/thumbnail.jp

    Fanny de Sivers (1920-2011)

    Get PDF
    Le 22 juin dernier, à Eaubonne en région parisienne, disparaissait Fanny de Sivers. Près de cinquante années d’un voyage émerveillé dans l’univers de la linguistique nous laissent une œuvre à la fois interdisciplinaire et aventureuse. Née à Pärnu en 1920, Fanny de Sivers étudie à Tartu, Wrocław, Würtzburg, Innsbruck, Lund et Paris, où elle s’installe au début des années cinquante. Elle soumet sa thèse de doctorat, portant sur les préfixes lettons du verbe live, à Julius Mägiste en 1967. En Fr..

    Fanny de Sivers (1920-2011)

    Get PDF
    Le 22 juin dernier, à Eaubonne en région parisienne, disparaissait Fanny de Sivers. Près de cinquante années d’un voyage émerveillé dans l’univers de la linguistique nous laissent une œuvre à la fois interdisciplinaire et aventureuse. Née à Pärnu en 1920, Fanny de Sivers étudie à Tartu, Wrocław, Würtzburg, Innsbruck, Lund et Paris, où elle s’installe au début des années cinquante. Elle soumet sa thèse de doctorat, portant sur les préfixes lettons du verbe live, à Julius Mägiste en 1967. En Fr..

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Impact of Ultra-High-Pressure Homogenization of Buttermilk for the Production of Yogurt

    No full text
    Despite its nutritional properties, buttermilk (BM) is still poorly valorized due to its high phospholipid (PL) concentration, impairing its techno-functional performance in dairy products. Therefore, the objective of this study was to investigate the impact of ultra-high-pressure homogenization (UHPH) on the techno-functional properties of BM in set and stirred yogurts. BM and skimmed milk (SM) were pretreated by conventional homogenization (15 MPa), high-pressure homogenization (HPH) (150 MPa), and UHPH (300 MPa) prior to yogurt production. Polyacrylamide gel electrophoresis (PAGE) analysis showed that UHPH promoted the formation of large covalently linked aggregates in BM. A more particulate gel microstructure was observed for set SM, while BM gels were finer and more homogeneous. These differences affected the water holding capacity (WHC), which was higher for BM, while a decrease in WHC was observed for SM yogurts with an increase in homogenization pressure. In stirred yogurts, the apparent viscosity was significantly higher for SM, and the pretreatment of BM with UHPH further reduced its viscosity. Overall, our results showed that UHPH could be used for modulating BM and SM yogurt texture properties. The use of UHPH on BM has great potential for lower-viscosity dairy applications (e.g., ready-to-drink yogurts) to deliver its health-promoting properties
    corecore