54 research outputs found

    ASSESSING THE IMPACT OF THE HIGHWAY 25 EXPANSION PROJECT ON AIR QUALITY IN MONTREAL USING GIS

    Get PDF
    Assessing the impact of the highway 25 expansion project on air quality in montreal using gis. The aim of the paper is to assess local air pollution implications of the Highway 25 expansion project from Montreal. The basic concept of the roadway air dispersion model consists in calculating air pollutant levels in the vicinity of a highway by considering it as a line source. To fulfill this assessment, GIS software was used in order to determine pollutant distribution around the study area based on data collected by existing air monitoring stations located in the City of Montreal. GIS interpolation methods, notably Kriging and Inverse Distance Weighted (IDW), was used to generate maps of pollutant concentrations across the study area. From the results, recommendations will be made in regards to the project and appropriate mitigatory alternatives suggested

    Dermoscopic Dark Corner Artifacts Removal: Friend or Foe?

    Full text link
    One of the more significant obstacles in classification of skin cancer is the presence of artifacts. This paper investigates the effect of dark corner artifacts, which result from the use of dermoscopes, on the performance of a deep learning binary classification task. Previous research attempted to remove and inpaint dark corner artifacts, with the intention of creating an ideal condition for models. However, such research has been shown to be inconclusive due to lack of available datasets labelled with dark corner artifacts and detailed analysis and discussion. To address these issues, we label 10,250 skin lesion images from publicly available datasets and introduce a balanced dataset with an equal number of melanoma and non-melanoma cases. The training set comprises 6126 images without artifacts, and the testing set comprises 4124 images with dark corner artifacts. We conduct three experiments to provide new understanding on the effects of dark corner artifacts, including inpainted and synthetically generated examples, on a deep learning method. Our results suggest that introducing synthetic dark corner artifacts which have been superimposed onto the training set improved model performance, particularly in terms of the true negative rate. This indicates that deep learning learnt to ignore dark corner artifacts, rather than treating it as melanoma, when dark corner artifacts were introduced into the training set. Further, we propose a new approach to quantifying heatmaps indicating network focus using a root mean square measure of the brightness intensity in the different regions of the heatmaps. This paper provides a new guideline for skin lesions analysis with an emphasis on reproducibility

    Ariel - Volume 12(13) Number 4

    Get PDF
    Co-Editors Gary Fishbein Lynn Solomon Business Manager Rich Davis Assistant Business Manager Jeff Lavanier Layout Editors Paul J. Berlin Tracy A. Glauser Photography Editor Ben Alma

    Interpretability of a deep learning based approach for the classification of skin lesions into main anatomic body sites

    Get PDF
    Over the past few decades, different clinical diagnostic algorithms have been proposed to diagnose malignant melanoma in its early stages. Furthermore, the detection of skin moles driven by current deep learning based approaches yields impressive results in the classification of malignant melanoma. However, in all these approaches, the researchers do not take into account the origin of the skin lesion. It has been observed that the specific criteria for in situ and early invasive melanoma highly depend on the anatomic site of the body. To address this problem, we propose a deep learning architecture based framework to classify skin lesions into the three most important anatomic sites, including the face, trunk and extremities, and acral lesions. In this study, we take advantage of pretrained networks, including VGG19, ResNet50, Xception, DenseNet121, and EfficientNetB0, to calculate the features with an adjusted and densely connected classifier. Furthermore, we perform in depth analysis on database, architecture, and result regarding the effectiveness of the proposed framework. Experiments confirm the ability of the developed algorithms to classify skin lesions into the most important anatomical sites with 91.45% overall accuracy for the EfficientNetB0 architecture, which is a state-of-the-art result in this domain

    Diabetic foot ulcers segmentation challenge report: benchmark and analysis

    Get PDF
    Monitoring the healing progress of diabetic foot ulcers is a challenging process. Accurate segmentation of foot ulcers can help podiatrists to quantitatively measure the size of wound regions to assist prediction of healing status. The main challenge in this field is the lack of publicly available manual delineation, which can be time consuming and laborious. Recently, methods based on deep learning have shown excellent results in automatic segmentation of medical images, however, they require large-scale datasets for training, and there is limited consensus on which methods perform the best. The 2022 Diabetic Foot Ulcers segmentation challenge was held in conjunction with the 2022 International Conference on Medical Image Computing and Computer Assisted Intervention, which sought to address these issues and stimulate progress in this research domain. A training set of 2000 images exhibiting diabetic foot ulcers was released with corresponding segmentation ground truth masks. Of the 72 (approved) requests from 47 countries, 26 teams used this data to develop fully automated systems to predict the true segmentation masks on a test set of 2000 images, with the corresponding ground truth segmentation masks kept private. Predictions from participating teams were scored and ranked according to their average Dice similarity coefficient of the ground truth masks and prediction masks. The winning team achieved a Dice of 0.7287 for diabetic foot ulcer segmentation. This challenge has now entered a live leaderboard stage where it serves as a challenging benchmark for diabetic foot ulcer segmentation

    Advanced Technology Large-Aperture Space Telescope (ATLAST): A Technology Roadmap for the Next Decade

    Full text link
    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a set of mission concepts for the next generation of UVOIR space observatory with a primary aperture diameter in the 8-m to 16-m range that will allow us to perform some of the most challenging observations to answer some of our most compelling questions, including "Is there life elsewhere in the Galaxy?" We have identified two different telescope architectures, but with similar optical designs, that span the range in viable technologies. The architectures are a telescope with a monolithic primary mirror and two variations of a telescope with a large segmented primary mirror. This approach provides us with several pathways to realizing the mission, which will be narrowed to one as our technology development progresses. The concepts invoke heritage from HST and JWST design, but also take significant departures from these designs to minimize complexity, mass, or both. Our report provides details on the mission concepts, shows the extraordinary scientific progress they would enable, and describes the most important technology development items. These are the mirrors, the detectors, and the high-contrast imaging technologies, whether internal to the observatory, or using an external occulter. Experience with JWST has shown that determined competitors, motivated by the development contracts and flight opportunities of the new observatory, are capable of achieving huge advances in technical and operational performance while keeping construction costs on the same scale as prior great observatories.Comment: 22 pages, RFI submitted to Astro2010 Decadal Committe

    Situational factors shape moral judgements in the trolley dilemma in Eastern, Southern and Western countries in a culturally diverse sample

    Get PDF

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore